
Functional Java Bytecode∗

Christopher LEAGUE Valery TRIFONOV Zhong SHAO

Computer Science Department, Yale University
POB 208285, New Haven, CT 06520 USA

{league, trifonov, shao}@cs.yale.edu

ABSTRACT

We describe the design and implementation of λJVM, a
functional representation of Java bytecode that makes data
flow explicit, verification simple, and that is well-suited for
translation into lower-level representations such as those
used in optimizing compilers. It is a good alternative to
stack-based Java bytecode for virtual machines or ahead-of-
time compilers which optimize methods and produce native
code. We use λJVM as one component in a sophisticated
type-preserving compiler for Java class files. Though our
implementation is incomplete, preliminary measurements of
both compile and run times are promising.

Keywords: Java, type-preserving compilation, intermediate
languages, typed lambda calculus.

1. MOTIVATION

The Java™ platform allows code from an untrusted producer
to be transmitted to a consumer in a form that can be
verified [10, 18]. Analogously, much recent work in type
theory focuses on using type systems and logics to reason
about the safety and security of low-level object code [22,
20, 4]. These systems have several potential advantages over
the Java platform. Since they use lower-level code, they can
better support different kinds of source languages. While
many kinds of compilers target the Java virtual machine,
they must often resort to Java primitives which are awkward
or inefficient. JVML cannot express raw data layouts or
optimizations.

For the especially security-conscious, a more severe
problem is that the Java platform has an enormous trusted
computing base (TCB). In addition to the verifier, we must
trust that the just-in-time compiler, a considerably large
and complex piece of software, does not introduce security-
critical bugs. In systems based on proof-carrying code or
typed machine language, the compiler can be removed from
the TCB.

The FLINT project at Yale aims to build a type-
preserving compiler infrastructure to generate low-level
typed object code for multiple source languages [26]. The
first generation of our FLINT intermediate language is
widely distributed as a key component of the Standard ML

∗This work was sponsored in part by the Defense Advanced Research
Projects Agency ISO under the title “Scaling Proof-Carrying Code to
Production Compilers and Security Policies,” ARPA Order No. H559,
issued under Contract No. F30602-99-1-0519, and in part by NSF Grants
CCR-9901011 and CCR-0081590. The views and conclusions contained
in this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

of New Jersey compiler [27, 28]. We have recently extended
FLINT to support a sophisticated type-preserving front end
for Java [16, 17].

This paper describes λJVM, an intermediate language
we designed as a midpoint between JVML and FLINT. We
believe it is a good alternative to stack-based Java bytecode
for virtual machines or ahead-of-time compilers which op-
timize methods and produce native code. It is already in
a form that, like static single assignment [1], makes data
flow explicit. In addition, λJVM is cleaner to specify and
simpler to verify than JVML.

2. DESIGN

λJVM is a simply-typed lambda calculus [5] expressed in A-
normal form [6] and extended with the types and primitive
instructions of the Java virtual machine. The syntax is given
in figure 1. We use terms e in place of the bytecode for
method bodies; otherwise the class file format remains the
same. A-normal form ensures that functions and primitives
are applied to values only; the let syntax binds intermediate
values to names. A nested algebraic expression such as
(3 + 4) × 5 is expressed in A-normal form as let x =
3 + 4; let y = x × 5; return y.

By simply-typed, we mean that polymorphic types and
user-defined type constructors are banned. Types include
integers I, floats F, and the rest of Java’s primitive types. V
is the void type, used for methods or functions which do
not return a value. Class or interface names c also serve as
types. c0 indicates an uninitialized object of class c. (We
describe our strategy for object initialization verification in
§4.) The set type {c} represents a union. Normally we
can treat {a, b, c} as equivalent to the name of the class or
interface which is the least common ancestor of a, b, and
c in the class hierarchy. (For interfaces, however, a usable
ancestor does not always exist; see §4.) Finally, (τ) → τ is
the type of a λJVM function with multiple arguments.

Values include names x (introduced by let), constants
of various types, the null constant (null[τ] for a given
array or object type τ), and, finally, anonymous functions
λ (x : τ) e. The names and types of arguments are written
inside the parentheses, and followed by e, the function body.

Terms include two binding forms: letrec binds a set
of mutually recursive functions; let x = p; e executes the
primitive operation p, binds the result to x, and continues
executing e. If we are uninterested in the result of a primop
(or it does not produce a result), the sequencing form p; e
may be used instead of let. Conditional branches are used
for numeric comparisons and for testing whether reference
values are null. For brevity, we omit the lookupswitch and
tableswitch of the Java virtual machine. Finally, the base

Types τ ::= I | F | . . . | V | c | τ[]
| c0 | {c} | (τ) → τ

Values v ::= x | i | r | s | null[τ] | λ (x : τ) e

Terms e ::= letrec x = v. e | let x = p; e | p; e
| if br[τ] v v then e else e
| return | return v | v (v) | throw v

Primops p ::= new c | chkcast c v | instanceof c v
| getfield fd vo | putfield fd vo v
| getstatic fd | putstatic fd v
| invokevirtual md vo (v)
| invokeinterface md vo (v)
| invokespecial md vo (v)
| invokestatic md (v)

| bo[τ] v v | neg[τ] v | convert[τ0, τ1] v

| newarray[τ] vn | arraylength[τ] va
| aload[τ] va vi | astore[τ] va vi vo

Branches br ::= eq | ne | lt | le | gt | ge
Binops bo ::= br | add | mul | div | and | or | . . .

Field descriptor fd ::= τ c.f

Method descriptor md ::= c.m(τ)τ

Figure 1: Syntax of λJVM method bodies. Meta-variable c
ranges over class and interface names; x ranges over value
names; i, r, and s range over integer, floating point, and
string constants, respectively. The overline (v) indicates zero
or more delimited occurrences.

cases can return (with an optional value), call a function,
or throw an exception.

The primitive operations cover those JVM instructions
which are not for control flow or stack manipulation. They
may be grouped into three categories: object, numeric,
and array. Object primops include new, the dynamic cast
and instanceof predicate, field accesses, and method calls.
Field and method descriptors include the class name and
type, just as they do in the JVM. Numeric primops are
the usual arithmetic and conversions; branches, when used
as primops, return boolean values. Array primops create,
subscript, update, and return the length of an array. We
use square brackets for type parameters which, in JVML,
are part of the instruction. Thus, iadd is expressed as
add[I], fmul is mul[F], and i2f is convert[I, F]. We omit
multi-dimensional arrays, monitorenter and monitorexit
for brevity.

There are three important things to note about λJVM.
First, it is functional. There is no operand stack, no local
variable assignment, and all data flow is explicit. Second, it
is impossible to call a function and continue executing after
it returns: let y = f (x); . . . is not valid syntax. Therefore
all function calls can be implemented as jumps. (Tail call
optimization is standard practice in compilers for functional
languages.) This makes λJVM functions very lightweight;
more akin to basic blocks than to functions in C.

Third, functions are first class and lexically scoped. We
will use higher-order functions to implement subroutines,
and they may be useful for exception handlers as well.
Importantly, functions in λJVM cannot escape from the
method in which they are declared. Except for the entry
point of a method, call sites of all λ-functions are known.

This means a compiler is free to use the most efficient call-
ing convention it can find. Typically, each higher-order
function is represented as a closure – a pair of a function
pointer and an environment containing values for the free
variables [15]. This representation is convenient, consistent,
and compatible with separate compilation, but many other
techniques are available. Our implementation currently uses
defunctionalization [25].

Kelsey and Appel [13, 3] have observed that A-normal
form for functional programs is equivalent to static single
assignment (SSA) form used in many optimizing compilers
to make analyses clean and efficient. This is why λJVM is
preferable to stack-based Java bytecode for virtual machines
(or ahead-of-time compilers) that optimize methods and
produce native code – it is already in a format suitable for
analysis, optimization, and code generation. Furthermore,
as we discuss in §4, type checking for λJVM is far simpler
than standard class file verification.

3. TRANSLATION

In this section, we describe how to translate JVM byte-
code to λJVM. Figure 2(a) contains a simple Java method
which creates objects, invokes a method, and updates a
loop counter. Suppose that IntPt and ColorPt are both
subclasses of Pt. With this example, we will demonstrate
set types and mutable variable elimination.

Figure 2(b) shows the bytecode produced by the Sun
Java compiler. The first step in transforming the bytecode to
λJVM is to find the basic blocks. This method begins with
a block which allocates and initializes an IntPt, initializes
j, then jumps directly to block C. C does the loop test
and either jumps to B (the loop body) or falls through and
returns. The loop body creates a ColorPt, updates the loop
counter, and then falls through to the loop test.

Next, data flow analysis must infer types for the stack
and local variables at each program point. This analysis is
also needed during bytecode verification. In the beginning,
we know that local variable 0 contains the method argument
i and the stack is empty. (For virtual methods, local 0
contains this.) Symbolic execution of the first block reveals
that, upon jumping to C, local 1 contains an IntPt and local
2 contains an int. We propagate these types into block C,
and from there into block B. During symbolic execution of
B, we store a ColorPt into local 1. Since the current type
of local 1 is IntPt, we must unify these. Fortunately, we
can unify these in λJVM without even knowing where they
fit into the class hierarchy – we simply place them into a
set type. Now local 1 has type {IntPt, ColorPt}. If two
types cannot be unified (int and IntPt, for example), then
the variable is marked as unusable (void). Block C is a
successor of B, and since the type of local 1 has changed,
we must check it again. Nothing else changes, so the data
flow is complete and we know the types of the locals and
the stack at the start of each block.

Next we use symbolic execution to translate each block
to a λ-function. The type annotations within each λ-
binding come directly from the type inference. For each
instruction which pushes a value onto the operand stack,
we push a value (either a fresh name or a constant) onto
the symbolic stack. For each instruction which fetches its
operands from the stack, we harvest the values from the
symbolic stack and emit the corresponding primop. Figure
2(c) shows the resulting code. The method is a λ-function
with an argument i. B and C are functions implementing
the basic blocks of the same name, and the code of the first
block follows. The loop counter is updated by passing a

(a) Java source

public static void m (int i) {
Pt p = new IntPt(i);
for (int j = 1; j < i; j *= 2) {

p = new ColorPt(j);
}
p.draw();
return;

}

(c) λJVM code

public static m(I)V = λ (i : I)
letrec C = λ (p : {IntPt, ColorPt}, j : I)

if lt[I] j i then B (p, j)
else invokevirtual Pt.draw()V p ();

return.
B = λ (p : {IntPt, ColorPt}, j : I)

let q = new ColorPt;
invokespecial ColorPt.<init>(I)V q (j);
let k = mul[I] j 2;
C (q, k).

let r = new IntPt;
invokespecial IntPt.<init>(I)V r (i);
C (r, 1)

(b) Java VM bytecode

public static m(I)V
new IntPt
dup
iload_0
invokespecial IntPt.<init>(I)V
astore_1 ; p = new IntPt(i)
iconst_1
istore_2 ; j = 1
goto C

B: new ColorPt
dup
iload_2
invokespecial ColorPt.<init>(I)V
astore_1 ; p = new ColorPt(j)
iload_2
iconst_2
imul
istore_2 ; j *= 2

C: iload_2
iload_0
if_icmplt B ; goto B if j < i
aload_1 ; p.draw()
invokevirtual Pt.draw()V
return

Figure 2: A sample method expressed as Java source (a), in the stack-based JVM bytecode (b), and in λJVM (c).

new value to function C each time around the loop. Since
the argument i is unchanged in the method, we have lifted
its binding so that the other two blocks are within its scope.
(Our implementation does not currently do this, but it is a
simple transformation.)

We used this rather simple example to illustrate the basic
principles, but two JVML features prove quite challenging:
subroutines and exception handlers.

Subroutines
The Java compiler uses subroutines to implement finally
blocks [18]. Other compilers that target JVML could, of
course, use them for other reasons. The jsr instruction
pushes a return address onto the stack and transfers control
to the specified label. The ret instruction jumps back to
the return address in the specified local variable.

Subroutines pose three major challenges. First, they are
“polymorphic over the types of the locations they do not
touch” [29]. As long as a subroutine ignores local 2, say,
it could contain an integer at one call site and a float at
another. Second, since return addresses can be stored in
local variables, subroutine calls and returns need not obey
a stack discipline. Indeed, they need not return at all. In
Java, we need only to place a break or continue inside a
finally block to produce a subroutine which ignores its
return address and jumps elsewhere. Finally, a subroutine
might update a local variable. Since locals are not mutable
in λJVM, the subroutine must explicitly pass the new value
back to the caller.

We solve these problems using the continuation-passing
idiom from functional programming. The subroutine takes
a higher-order function (called the return continuation) in
place of a return address. Any values the subroutine might
change are passed to the return continuation as arguments;
any free variables in the continuation are preserved across
the call.

An example is worthwhile. The subroutine S in the
following code has two call sites. In the first, local 1 is
uninitialized; in the second, it contains a string. The sub-

routine either updates local 0 and returns normally or jumps
directly to the end of the method.

public static f(I)V
jsr S
ldc "Hello" S: astore_2 ; ret addr
astore_1 iload_0

L: jsr S ifeq R
aload_1 iinc 0 -1
invoke println ret 2
goto L R: return

Bytecode verification is much trickier in the presence of
subroutines, and our type inference phase is no different.
We must unify the types of locals at different call sites, and
decide which are passed to the subroutine, which are passed
back to the caller, and which are otherwise preserved across
the call. A translation of the example appears below.

public static f(I)V = λ (n : I)
letrec S = λ (i : I, r : (I) → V)

if eq[I] i 0 then return
else let j = add[I] i -1;

r (j).
L = λ (i : I, s : String)

S (i, λ (j : I) invoke println s; L (j, s)).
S (n, λ (j : I) L (j, "Hello"))

The subroutine S takes an argument r of type (I) → V;
this is the return continuation. In one branch, it returns
from the method, in the other, it jumps to the continuation,
passing the new value of local 0. Now consider the two
call sites of S. Inside L the string s is a free variable of the
functional argument, so it is preserved across the call.

This solution works quite well. We used Jasmin, a JVML
assembler [19], to generate a series of convoluted test cases
which do not arise from typical Java compilers. Our code
translated all of them correctly. We emphasize again that
these higher-order functions can be compiled away quite
efficiently in λJVM since all call sites are known.

Exception handlers
Unfortunately, exception handlers do not fit as nicely into
λJVM. We have many ideas, but have not yet settled on
a solution. The exception table in JVML is not structured
like the try/catch blocks of Java. Protected regions need not
be properly nested, nor do they necessarily correspond to
blocks induced by non-exceptional control flow. One can
use exceptions and handlers to implement arbitrary jumps
and loops. These features complicate analysis, to be sure,
but they are tractable.

The primary difficulty is in propagating the values of
local variables into the handler. Since control can jump to
the handler from outside the current method, local values
used by the handler cannot so easily be kept in registers.
This problem is all too familiar to those who optimize Java
bytecode in the presence of exceptions [11].

One solution requires adding mutable cells to λJVM.
Any locals used in an exception handler could then be
stored in memory rather than passed around in registers.
The analysis required to implement this scheme is far from
trivial, particularly if we want to reduce loads and stores.
Compiling Java directly, we could use the structure of the
try blocks to guide storage of local variables. Unfortunately
this structure is not present in the class file and may not
even exist.

Another possibility is to use continuation-passing style
at the method level. Once we translate to FLINT, null
pointer checks and the like are exposed, so it is possible for
locally-raised exceptions to jump directly to the handler. To
accommodate externally-raised exceptions, we could pass
an error continuation to each method we invoke. Values
which must be propagated to the handler are simply free
variables in the error continuation. This technique should
work quite well in FLINT, but we are not yet certain how
best to express such handlers in λJVM.

4. VERIFICATION

The JVM specification [18] defines a conservative static
analysis for verifying the safety of a class file. Code which
passes verification should not, among other things, be able
to corrupt the virtual machine which executes it. One of
the primary benefits of λJVM is that verification reduces
to simple type checking. Most of the analysis required
for verification is performed during translation to λJVM.
The results are then preserved in type annotations, so type
checking can be done in one pass. Our type checker is
less than 260 lines of ML code, excluding the λJVM data
structure definitions.

Two of the most complex aspects of class file verification
are subroutines [29] and object initialization [7]. We have
already seen how subroutines disappear, but let us explore
in detail the problem of object initialization.

Object initialization
Our explanation of the problem follows that of Freund and
Mitchell [7]. In Java source code, the new syntax allocates
and initializes an object simultaneously:

Pt p = new Pt(i); p.draw();

In bytecode, however, these are separate instructions:

new Pt ; alloc
dup
iload_0
invokespecial Pt.<init>(I)V ; init
invokevirtual Pt.draw()V ; use

Between allocation and initialization, the pointer can be
duplicated, swapped, stored in local variables, etc. Once we
invoke the initializer, all instances of the pointer become
safe to use. We must track these instances with some form
of alias analysis. The following code creates two points; the
verifier must determine whether the drawn point is properly
initialized.

1: new Pt
2: dup
3: new Pt
4: swap
5: invokespecial Pt.<init>()V
6: pop
7: invokevirtual Pt.draw()V

This code would be incorrect without the pop.
Lindholm and Yellin [18] describe the conservative alias

analysis used by the Sun verifier. The effect of the new
instruction is modeled by pushing the Pt type onto the
stack along with an ‘uninitialized’ tag and the offset of the
instruction which created it. To model the effect of the
initializer, update all types with the same instruction offset,
marking them as initialized. Finally, uninitialized objects
must not exist anywhere in memory during a backward
branch.

In λJVM, many aliases disappear with the local variable
and stack manipulations. Every value has a name and a
type. The new primop introduces a name with uninitialized
object type c0. The initializer then updates the type of its
named argument in the environment. After translating the
previous example to λJVM, it is clear that the drawn object
is initialized:

let x = new Pt;
let y = new Pt;
invokespecial Pt.<init>()V x;
invokevirtual Pt.draw()V x;

After invokespecial, the type environment contains x �→
Pt and y �→ Pt0.

Aliases can occur in λJVM when the same pointer is
passed as two arguments to a basic block. Translating the
Java statement new Pt (f? x : y) to JVML introduces a
branch between the new and the invokespecial. A naı̈ve
translation to λJVM might introduce an alias because the
same pointer exists in two locations across basic blocks. Our
inference algorithm must employ the same technique as the
Sun verifier – mark the uninitialized object arguments with
the offset of the new instruction. Then, we can recognize
arguments that are aliases and coalesce them.

Subtyping and set types
Two other interesting aspects of the λJVM type system are
the subtype relation and the set types. The subtype relation
(τ � τ ′) handles numeric promotions such as I � F. On
class and interface names it mirrors the class hierarchy. The
rules for other types are as follows:

c ∈ {c}
c � {c}

{c1} ⊆ {c2}
{c1} � {c2}

τ � τ ′

τ[] � τ ′[]
c � c′ ∀c ∈ {c}

{c} � c′
(∗)

where the curly typewriter braces { · } are the λJVM set
types and the Roman braces {·} are standard set notation.

The set elimination rule (∗) is required when a value
of set type is used in a primop with a field or method

descriptor. In function C of figure 2(c), for example, p is
used as the self argument for method draw in class Pt. The
type of p is {IntPt, ColorPt}, so the type checker requires
IntPt � Pt and ColorPt � Pt.

In our example, we could have used the super class type
Pt in place of the set {IntPt, ColorPt}, but with interfaces
and multiple inheritance, this is not always possible. Both
Goldberg and Qian have observed this problem [9, 24]; the
following example is from Knoblock and Rehof [14]:

interface SA { void saMeth(); }
interface SB { void sbMeth(); }
interface A extends SA, SB { . . . }
interface B extends SA, SB { . . . }

public static void (boolean f, A a, B b) {
if (f) { x = a; }
else { x = b; }
x.saMeth();
x.sbMeth();

}

What is the type of x after the join? The only common
super type of A and B is Object. But then the method
invocations would not be correct. We must assign to x
the set type {A, B}. For the first method invocation, the
type checker requires that {A, B} � SA. For the second
invocation, {A, B} � SB. These subtyping judgments are
easily derived from the interface hierarchy (A � SA, B � SA,
A � SB, and B � SB) using the set elimination rule (∗).

We utilize subtypes either by subsumption (if v has type
τ and τ � τ ′ then v also has type τ ′) or as explicit coer-
cions (let x = convert[τ, τ ′] v; . . . where τ � τ ′). Our
type checker accepts the former but can automatically insert
explicit coercions as needed.

5. IMPLEMENTATION

We have implemented the translation from Java class files
to λJVM. After parsing the class file into a more abstract
form, methods are split into basic blocks. Next, type infer-
ence determines the argument types for each basic block.
It determines subroutine calling conventions and eliminates
aliased arguments. Finally, the translation phase uses the
results of type inference to guide conversion to λJVM. Our
type checker verifies that the translation produced some-
thing sensible and checks those JVM constraints that were
not already handled during parsing and inference. Although
we translate exception-handling code, jumps to the handlers
are currently omitted – exceptions can be thrown, but not
caught. Subroutine calls to finally blocks work fine in
non-exceptional cases.

The next stage in our application compiles λJVM to
FLINT. We developed a type-theoretic encoding of Java
objects and classes which, at run time, behaves just like
a standard implementation using per-class dispatch tables
and self-application [16, 17]. Higher-order functions in
λJVM are eliminated using defunctionalization [25]. The
implementation of this stage is still in progress; we can
currently handle primitive types, subroutines, inheritance,
fields, static and virtual method invocation, and arrays of
primitive types.

Our FLINT/ML compiler [26] then performs standard
optimizations, closure conversion, and code generation.
Thus we can compile toy Java programs through λJVM
into FLINT and then into native code. Intermediate code
type-checks after every phase. Preliminary measurements

of both compilation and run times are promising, but some
work remains before we can run real benchmarks.

Because our application does not require it, we have not
implemented serialization for λJVM programs. We could
borrow the byte codes from JVML for primops, and then
use relative instruction offsets for representing let-bound
names. Or we could follow Amme et al. [2], who describe
two innovative encoding techniques – referential integrity
and type separation – in which only well-formed programs
can be specified. That is, programs are well-formed by
virtue of their encoding.

6. RELATED WORK

Katsumata and Ohori [12] translate a subset of JVML into
a λ-calculus by regarding programs as proofs in different
systems of propositional logic. JVML programs correspond
to proofs of the sequent calculus; λ-programs correspond
to natural deductions. Translations between these systems
yield translations of the underlying programs. This is a very
elegant approach – translated programs are type-correct by
construction. Unfortunately, it seems impossible to extend
it to include JVML subroutines and exceptions.

Gagnon et al. [8] give an algorithm to infer static types
for local variables in JVML. Since they do not use a single-
assignment form, they must occasionally split variables into
their separate uses. Since they do not support set types,
they insert explicit type casts to solve the multiple interface
problem described above.

Amme et al. [2] translate Java to SafeTSA, an alternative
mobile code representation based on SSA form. Since they
start with Java, they avoid the complications of subroutines
as well as the multiple interface problem. Basic blocks must
be split wherever exceptions can occur, and control-flow
edges are added to the catch and finally blocks. Other-
wise, SafeTSA is similar in spirit to λJVM.

7. CONCLUSION

We have described the design and implementation of λJVM,
a functional representation of Java bytecode which makes
data flow explicit, verification simple, and which is well-
suited for translation into lower-level representations such
as those used in optimizing compilers.

λJVM is particularly successful as an intermediate point
between Java bytecode and the kind of A-normal form
typed λ-calculus typically used for compiling functional
languages [21, 23, 27]. It supports a critical separation
of concerns by abstracting away the details of JVML and
providing a model of control and data flow closer to that
of a functional language. Given an encoding of objects and
classes in the target language, the Java primitives of λJVM
can then be compiled away [16, 17].

We use λJVM as one component of a type-preserving
compiler for Java class files. Though the implementation
is still in progress, we can compile simple Java programs
compile successfully through λJVM into FLINT, and then
into native code.

ACKNOWLEDGMENTS

We wish to thank Stefan Monnier for insightful discussions
on closure representations and exception handling. John
Garvin implemented the class file parser and basic block
algorithm. Daniel Dormont contributed preliminary code

for analyzing exception handlers. They both spotted and
fixed many bugs.

REFERENCES

[1] B. Alpern, M. Wegman, and F. K. Zadeck. Detecting
equality of variables in programs. In Proc. Symp. on
Principles of Program. Lang., pages 1–11, January 1988.

[2] W. Amme, N. Dalton, J. von Ronne, and M. Franz.
SafeTSA: A type safe and referentially secure mobile-
code representation based on static single assignment
form. In Proc. Conf. on Program. Lang. Design Impl.
ACM, 2001.

[3] A. W. Appel. SSA is functional programming. ACM
SIGPLAN Notices, April 1998.

[4] A. W. Appel. Foundational proof-carrying code. In
Proc. IEEE Symp. on Logic in Computer Science (LICS),
June 2001.

[5] H. Barendregt. Typed lambda calculi. In S. Abramsky,
D. Gabbay, and T. Maibaum, editors, Handbook of
Logic in Computer Science, volume 2. Oxford, 1992.

[6] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen.
The essence of compiling with continuations. In Proc.
Conf. on Program. Lang. Design Impl., pages 237–247,
Albuquerque, June 1993.

[7] S. N. Freund and J. C. Mitchell. A type system for ob-
ject initialization in the Java bytecode language. Trans.
Program. Lang. and Syst., 21(6):1196–1250, 1999.

[8] E. Gagnon, L. Hendren, and G. Marceau. Efficient
inference of static types for Java bytecode. In Proc.
Static Analysis Symp., 2000.

[9] A. Goldberg. A specification of Java loading and byte-
code verification. In Conf. on Computer and Comm.
Security, pages 49–58. ACM, 1998.

[10] J. Gosling, B. Joy, G. Steele, and G. Bracha. The
Java Language Specification. The Java Series. Addison-
Wesley, Reading, Mass., 2nd edition, 2000.

[11] M. Gupta, J. Choi, and M. Hind. Optimizing Java
programs in the presence of exceptions. In Proc. 14th

European Conf. on Object-Oriented Program., Cannes,
June 2000.

[12] S. Katsumata and A. Ohori. Proof-directed decompila-
tion of low-level code. In Proc. 10th European Symp. on
Programming (ESOP), volume 2028 of LNCS, Geneva,
April 2001.

[13] R. Kelsey. A correspondence between continuation
passing style and static single assignment form. In
Proc. Workshop on Intermediate Representations, pages
13–22. ACM, March 1995.

[14] T. Knoblock and J. Rehof. Type elaboration and sub-
type completion for Java bytecode. In Proc. Symp. on
Principles of Program. Lang., pages 228–242, 2000.

[15] P. Landin. The mechanical evaluation of expressions.
Computer J., 6(4):308–320, 1964.

[16] C. League, Z. Shao, and V. Trifonov. Representing
Java classes in a typed intermediate language. In Proc.
Int’l Conf. Funct. Program., pages 183–196, New York,
September 1999. ACM.

[17] C. League, V. Trifonov, and Z. Shao. Type-preserving
compilation of Featherweight Java. In Proc. Int’l Work-
shop Found. Object-Oriented Lang., London, January
2001.

[18] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification. Addison-Wesley, 2nd edition, 1999.

[19] J. Meyer and T. Downing. Java Virtual Machine.
O’Reilly, 1997.

[20] G. Morrisett, K. Crary, N. Glew, D. Grossman,
R. Samuels, F. Smith, D. Walker, S. Weirich, and
S. Zdancewic. TALx86: A realistic typed assembly
language. In Proc. Workshop on Compiler Support for
Syst. Soft., pages 25–35, New York, May 1999. ACM.

[21] G. Morrisett, D. Tarditi, P. Cheng, C. Stone, R. Harper,
and P. Lee. The TIL/ML compiler: Performance and
safety through types. In Proc. Workshop on Compiler
Support for Syst. Soft., New York, 1996. ACM.

[22] G. C. Necula. Proof-carrying code. In Proc. Symp.
on Principles of Program. Lang., pages 106–119, New
York, January 1997. ACM.

[23] S. L. Peyton Jones, C. Hall, K. Hammond, W. Partain,
and P. Wadler. The Glasgow Haskell Compiler: A
technical overview. In Proc. UK Joint Framework for
Inform. Tech., December 1992.

[24] Z. Qian. A formal specification for Java Virtual Ma-
chine instructions for objects, methods, and subrou-
tines. In J. Alves-Foss, editor, Formal Syntax and Se-
mantics of Java, volume 1523 of LNCS, pages 271–312.
Springer, 1999.

[25] J. C. Reynolds. Definitional interpreters for higher-
order programming languages. In Proc. 25th ACM
Nat’l Conf., pages 717–740, Boston, 1972.

[26] Z. Shao. An overview of the FLINT/ML compiler. In
Proc. Int’l Workshop on Types in Compilation, Amster-
dam, June 1997.

[27] Z. Shao and A. W. Appel. A type-based compiler for
Standard ML. In Proc. Conf. on Program. Lang. Design
Impl., pages 116–129, New York, June 1995. ACM.

[28] Z. Shao, C. League, and S. Monnier. Implement-
ing typed intermediate languages. In Proc. Int’l Conf.
Funct. Program., pages 313–323, New York, September
1998. ACM.

[29] R. Stata and M. Abadi. A type system for Java byte-
code subroutines. In Proc. Symp. on Principles of Pro-
gram. Lang., pages 149–160, San Diego, January 1998.
ACM.

