
Typed Compilation Against Non-Manifest Base Classes

Christopher League1 and Stefan Monnier2

1 Long Island University
christopher.league@liu.edu

2 Université de Montréal
monnier@iro.umontreal.ca

Abstract. Much recent work on proof-carrying code aims to build certifying
compilers for single-inheritance object-oriented languages, such as Java or C#.
Some advanced object-oriented languages support compiling a derived class with-
out complete information about its base class. This strategy—though necessary
for supporting features such as mixins, traits, and first-class classes—is not well-
supported by existing typed intermediate languages. We present a low-level IL
with a type system based on the Calculus of Inductive Constructions. It is an
appropriate target for efficient, type-preserving compilation of various forms of
inheritance, even when the base class is unknown at compile time. Languages
(such as Java) that do not require such flexibility are not penalized for it at run
time.

1 Motivation

In most object-oriented languages, programmers factor their solutions over a hierarchy
of classes. Since the classes in a hierarchy may appear in different compilation units,
one question that the language designer (or implementer) must address is: how much
information about a base class is needed to compile its derived class?

With its emphasis on efficient object layout and method dispatch, C++ [32] re-
quires complete information about the base class: the number, locations, and types of
all its fields and methods. Indeed, it is because C++ depends on this information that
a seemingly minor change to a base class triggers recompilation of all its descendents.
Java [23] is somewhat more flexible. To support binary compatibility, its class files are
not committed to a particular object layout. A derived class depends only on the names
and types of the base class fields and methods that it uses. Nevertheless, most Java im-
plementations ultimately compile classes to lower-level code using the same layouts
and techniques as C++.

A few modern object-oriented languages allow classes as module parameters (Moby
[15], OCaml [28]) or as first-class values (Loom [5]). Other languages support more
flexible forms of inheritance, such as mixins [24, 3] and traits [29]. If a base class is
not available for inspection when a derived class is compiled, we say the base class is
not manifest. Implementations of these languages use a dictionary data structure to map
method and field names to their locations in the object layout. The dictionary may be
applied at link time or at run time, as required by the language.

Here is a simple example in OCaml (although it could be expressed just as easily in
Moby). We declare a signature for modules containing a circle class that implements

2 Christopher League and Stefan Monnier

three methods: center, radius, and area. The abstract type spec permits different
implementations of this signature to have different constructor arguments.

module type CIRCLE =

sig type spec

class circle : spec -> object

method center : float*float

method radius : float

method area : float

end

end

Below, CircleBBoxdeclares a class bbox that inherits from a (non-manifest) base class
circle, overrides the area method (using a super call), and defines a new method
bounds.

module CircleBBox = functor (C : CIRCLE) -> struct

class bbox arg = object (self)

inherit C.circle arg as super

method area = super#area * 4.0 / pi (* area of bbox *)

method bounds = let (x,y) = self#center in

let r = self#radius in

((x-r,y-r), (x+r,y+r))

end

end

To compile this functor, we must make do with relatively little information about the
super class. We know it has the three methods specified in the signature, but not their
positions nor whether there are other (hidden) methods, nor even the size of objects. We
will return to this example throughout the paper.

Designing an effective intermediate language (IL) for compilers of these languages
is challenging. Although method invocation is atomic at the source level, the IL should
explicitly represent the dictionary search, method dereference, and (indirect) function
call as separate operations. This way the operations may be independently optimized:
combined, inlined, eliminated, or hoisted out of loops. To support such optimizations,
Fisher, Reppy, and Riecke designed Links, a calculus for compiling and linking classes,
based on the untyped λ-calculus. Its primitives can be combined “to express a wide
range of class-based object-oriented features, such as class construction and various
forms of method dispatch.” [17]

In recent years, many researchers have based intermediate languages on typed λ-
calculi. In addition to supporting type-directed optimizations, typed ILs are suitable
for generating certified object code, such as typed assembly language [25] or proof-
carrying code [26, 1]. Colby et al. [9] and League et al. [21, 22] have developed certify-
ing compilers for Java, but more advanced class mechanisms are not yet well supported
in this arena.

This paper presents a new intermediate language based on Links, but with a sound
and decidable type system. We adopt the ‘certified binaries’ framework of Shao et al.

Typed Compilation Against Non-Manifest Base Classes 3

e ::= x | n | e1 +e2 | λx.e | e1 e2 | 〈e1, ...,en〉 | e1 @e2 | e1 @e2← e3
| e # 〈e1, ...,en〉 | {l1 =e1, ..., ln =en} | e# l

Fig. 1. Links expression syntax.

[30], in which the types and proofs that govern computations are defined within the
Calculus of Inductive Constructions [11, 12]. Our language has the same primitive op-
erators as Links, so it is an appropriate target for efficient, type-preserving compilation
of various forms of inheritance, even when the base class is unknown at compile time.
Moreover, languages (such as Java) that do not require such flexibility are not penalized
for it at run time.

In the next section, we review the primitives of Links and explain an untyped trans-
lation of our running example. Section 3 introduces the framework of our type language,
and develops the semantics of LITL, our computation language. We revisit the exam-
ple, now in a typed setting, in section 4. Section 5 explores techniques for extending the
encoding to mixins and traits, and a discussion of related work appears in section 6.

2 A review of Links

This section is a summary of the untyped Links representation by Fisher et al. [17].
The syntax of expressions appears in Fig. 1. Apart from the variables (x), abstractions
(λx.e), and applications (e e′) inherited from the untyped λ-calculus, there are three
new features: tuples 〈e1, ...,en〉, dictionaries {l1 =e1, ..., ln =en}, and natural numbers
n.

Tuples are indexed by natural numbers (e@ i). They also support functional update
and extension. The expression e@ i ← e′ produces a new tuple just like e, but with
the value at offset i replaced by e′. The expression e # 〈e1, ...,en〉 produces a new tuple
containing all the values in tuple e followed by the values e1 through en. Functional
update will be used to implement overriding, while extension is helpful for inheritance.

Dictionaries map labels l to values. The expression e# l fetches the value corre-
sponding to label l in dictionary e; this is a more expensive operation than fetching a
value from a given offset in a tuple.

For the purpose of representing offsets (or slots) within tuples, we need only nat-
ural constants and addition. To write real programs, we would need more data types,
conditionals, and recursive functions. These features are orthogonal, and omitted from
the formal presentation for brevity (although we sometimes use them in examples).
The primitive reductions in Fig. 2 may help to elucidate these operations. The origi-
nal paper [17] includes more details, such as the definition of values (v) and evaluation
contexts. We will recast these details in a typed setting in section 3.

The most general strategy for encoding objects is this: represent a method suite as a
tuple of functions (also known as a virtual function table, or vtable), and use a dictionary
d to map method labels to natural numbers, representing the corresponding slots in the
vtable. Objects are tuples with a pointer to the vtable (shared by all objects created by
that class). If the vtable is in the first slot (offset zero) of the object x, then the self-
application expression for invoking a method named m would be ((x@0)@ (d #m)) x.

4 Christopher League and Stefan Monnier

n1 +n2 ; n3 where n3 = n1 +n2
(λx.e) v ; e[v/x]

〈v0, ...,vn−1〉@ i ; vi where i < n
〈v0, ...,vn−1〉@ i← v′ ; 〈v0, ...,vi−1,v′,vi+1, ...,vn−1〉 where i < n

〈v0, ...,vn−1〉 # 〈v′0, ...,v
′
m−1〉 ; 〈v0, ...,vn−1,v′0, ...,v

′
m−1〉

{l0 =v0, ..., ln−1 =vn−1}# l ; vi where l = li

Fig. 2. Links reduction rules.

let CircleBBox = λ〈sz,vt,dc〉.
let center offset = dc#center in

let radius offset = dc# radius in

let area offset = dc#area in

let dc′ = {center=center offset, radius= radius offset, area=area offset, bounds=sz} in

let area super = vt@area offset in

let area = λself .(area super self) ∗ 4 / PI in

let bounds = λself . let 〈x,y〉= ((self @0)@center offset) self in

let r = ((self @0)@radius offset) self in

〈〈x− r,y− r〉,〈x + r,y+ r〉〉 in
let vt′ = (vt@area offset← area) # 〈bounds〉 in 〈sz+1,vt′,dc′〉

Fig. 3. Translation of simple class generator into Links. We take several liberties with the syntax:
let x = e in e′ is the obvious syntactic sugar for ((λx.e′) e), but we also permit pattern-matching
on tuples.

There is of course an important connection between the dictionary and the vtable in
this representation, but they need not be packaged together. To compile a language (such
as Moby or OCaml) in which base classes become known at link time, the dictionary
would be a module parameter. All dictionary applications would be lifted to the top level
of each module, so they occur at link time (i.e., functor application time). To compile
Loom, in which classes are first-class values, a dictionary will need to be packaged with
each object and passed around at run time. To compile Java, the dictionary is not needed
at all, because the layout of the super class vtable is completely known at compile time.1

We can represent each class as a triple: the vtable and the dictionary, together with
the size of the vtable. The size is needed so that when we extend non-manifest base
classes, we can compute the offsets of new methods added to the vtable. We omit fields
and constructors for convenience, but they pose no additional problems. A class that
inherits from an unknown base class is therefore represented as a function that generates
a new class triple from an existing one. The function is applied once the base class is
provided. Figure 3 shows a rough translation of the example from section 1.

CircleBBox is a function whose argument is a triple representing a super class.
We begin the function by looking up the offsets of all the methods in the super class,

1 Here, we assume compilation to native code, which is done dynamically in many implementa-
tions. The observation is not true when producing JVM class files, which make extensive use
of symbolic references and enjoy binary compatibility.

Typed Compilation Against Non-Manifest Base Classes 5

and then constructing the dictionary for the new class we are generating. It has one
new method (bounds), so the new vtable will be larger by one slot. Next, we fetch the
existing implementation of area from the super class’s vtable vt; it will be called in the
new implementation of area. In the implementation of bounds, we invoke two methods
on self. We assume that an object is represented as a tuple with a pointer to its vtable
at offset zero. In the final let expression, we create the new vtable using the functional
update and tuple extension operators.

Fisher et al. [17] give further examples and justification for this encoding. Our goal
in this paper is to achieve the benefits of Links in a typed representation. There appear
to be two relatively independent problems here: (1) develop a sound but flexible type
system for the Links primitives, and (2) reflect the various subtype relationships of the
source language into the intermediate language.

Both of these problems are hard. In the first case, it is not just a matter of assigning
standard types—such as those developed by Cardelli and Mitchell [7]—to dictionary
lookup and tuple extension. The way the operators are used in Links, a given dictionary
will map method names to offsets in some set of tuples. Although we know nothing
about the size or structure of a tuple, we can use it anyway because some dictionary told
us where to find the method we need. Subtle invariants govern how these data structures
are linked to each other. To type-check Links, we must capture those invariants in the
type system.

As for the second problem, Links is intended to be a common intermediate language
for various class-based object-oriented languages. Such languages can have wildly dif-
ferent notions of subtyping and subsumption, from the simple name-based class and
interface relationships in Java to explicit upward casts in OCaml to the matching rela-
tion and match types in Loom [5]. One thing working in our favor at the intermediate
language level is that subsumption—where an object of one type may directly be treated
as an object of another (super) type—is not strictly necessary. The compiler may insert
explicit coercions that adjust the types of objects as needed—with no impact on the
run-time behavior—as long as these coercions are proved sound.

3 A new typed intermediate language

Shao et al. [30] introduced a framework “for explicitly representing complex proposi-
tions and proofs in typed intermediate and assembly languages.” The set of types that
classify computation terms is defined within the Calculus of Inductive Constructions
(CIC) [12]. The semantics of the computation language can then incorporate proposi-
tions and proofs expressed in CIC.

As an example, Shao et al. define a language with an unchecked array access oper-
ator. One of its operands (apart from the array and the index) is a proof that the index is
less than the length of the array. If both numbers are known at compile-time, generating
these proofs as constants is quite easy. Otherwise, the if expression—used to check the
index against the bound dynamically—provides proofs to its branches that relate to the
semantics of its test expression. This language permits safe bounds check elimination.

The full power of CIC is available in generating the proofs, but they are (like types)
compile-time phenomena only: once an expression is shown to be well-formed, the

6 Christopher League and Stefan Monnier

proofs and types may be erased and have no impact on the behavior and performance
of the program.

The Calculus of Constructions [11] rests on the most powerful corner of the λ
cube [2]. It can encode Church’s higher-order predicate logic via the Curry-Howard
isomorphism [20]. Extended with inductive definitions, it is the basis for the Coq Proof
Assistant [10]. In this paper, we will use a typographically-enhanced variant of Coq 8
syntax.2 In fact, the definitions in this paper are automatically extracted and sent to Coq
for verification.

CIC is most conveniently expressed as a pure type system, where abstractions and
applications at different levels are expressed in a uniform syntax, but classified under
different sorts. The sorts of CIC include SET, PROP, and TYPE. We will use meta-
variables τ, σ, κ, and f to range over CIC terms, where τ is usually used for terms
corresponding to traditional types, κ for terms corresponding to traditional kinds, f
for type functions, and σ for everything else. The dependent product type is written as
Πα : σ1.σ2, or as σ1 → σ2 if α does not appear free in σ2. This type is introduced by
abstractions of the form λα :σ1.σ2 and eliminated by applications σ1 σ2. The calculus
supports inductive definitions, constructors, and dependent elimination. We freely use
the Coq match and Fixpoint syntax for eliminations, as well as other syntactic niceties
like implicit arguments.

3.1 Syntax of types and terms

Our first task is to define a set of types for our computation language, LITL.3 From
the Coq library, we import option constructor and the definition nat : SET of natural
numbers in terms of zero (O) and the successor function (S). We will also need sym :
SET to represent labels in the dictionary type. Symbols could be represented as natural
numbers, or defined (as in appendix D) as sequences of characters from some alphabet.
Here is the inductive definition of types in LITL:

Inductive Ty : SET ≡
| arw : Ty→ Ty→ Ty
| snat : nat→ Ty
| tup : nat→ (nat→ Ty)→ Ty
| dict : (sym→ option Ty)→ Ty
| mu′ : Πk : SET.(k→ Ty)→ Ty
| all : Πk : SET.(k→ Ty)→ Ty
| ex : Πk : SET.(k→ Ty)→ Ty.

Definition mu ≡ mu′ (k ≡ Ty).

arw τ1 τ2 is the type of a function mapping values of τ1 to values of τ2. snat n̂ is
the singleton type of the natural number n; that is, the value 0 has type snat O and
the expression 1+1 has type snat (S (S O)). tup n̂ f is the type of a tuple of size n
where f is a type function which maps the index of each field to its type. dict f is the

2 With version 8, Coq moved to a weaker, predicative variant of CIC. We need the impredicative
version, which is available with the command-line argument -impredicative-set.

3 LITL Is Typed Links.

Typed Compilation Against Non-Manifest Base Classes 7

type of a dictionary where f is a type function that maps each label to the type of its
corresponding value. mu f , all κ f , and ex κ f are the higher-order abstract syntax
encoding [27] of resp. the iso-recursive type µx. f x, the universally quantified type
∀x :κ. f x, and the existential type ∃x :κ. f x.

To classify an unknown natural number, we hide its value using an existential type:

Definition some nat : Ty ≡ ex snat.

(Thanks to Coq’s implicit arguments feature, the k parameter of ex is inferred from the
type of snat.) We can define syntactic sugar for other useful types:

Definition void : Ty ≡ all (λ t. t).
Definition unit : Ty ≡ ex (λ t. t).

The idea is that no values inhabit void (more commonly written as ∀α : Ty.α), and a
value of type unit has no property.

Tuples are described by their size, and a (type-level) function that maps indices to
component types. To specify the function, we will often build a list of types and pass it
to the ith function:

Definition ith : list Ty→ nat→ Ty ≡ λ l i. nth i l void.

We are using list and nth from the Coq library. Lists are constructed from nil and cons
(::), and nth has type Πα : SET.snat→ list α→ α→ α, where the α is implicit. We use
void as the default case, for when the index is out of range. Pairs and triples are used
fairly often in our encodings, so it is helpful to define more syntactic sugar:

Definition tup2 : Ty→ Ty→ Ty ≡ λ t u. tup 2 (ith (t :: u :: nil)).
Definition tup3 : Ty→ Ty→ Ty→ Ty ≡ λ t u v. tup 3 (ith (t :: u :: v :: nil)).

Dictionaries are described by a (partial) function that maps labels to types. The function
relies on the option : SET→ SET type constructor of Coq, which is either None : Πα :
SET.option α or Some : Πα : SET.α→ option α. Again, we specify the function using
a list (in this case a list of pairs, representing a map) and a lookup function:

Definition map : SET ≡ list (prod sym Ty).
Fixpoint lookup (m : map) (x : sym) {struct m} : option Ty ≡
match m with nil⇒ None | (y,v) :: m⇒ ifeq x y (Some v) (lookup m x) end.

The syntax of the type-annotated computation language appears in Fig. 4. It is essen-
tially the same syntax as the untyped version in Fig. 1, but we add a few type operators
and annotations.

The tuple selection and update operators now expect a CIC expression σ, represent-
ing a proof that the index is less than the size of the tuple. (We use lt : nat→ nat→ PROP
from the Coq library.) The labels in the dictionary construction and lookup syntax are
CIC expressions of set sym. We also added standard type manipulation terms such as the
type abstraction Λα :σ. f and its corresponding type instantiation e [τ], existential pack-
age constructor [τ1, e . τ2] and its corresponding destructor (open e1 as [α, x] in e2), as
well as recursive type folding (folde as τ) and unfolding (unfolde). Finally, there is a
cast expression (cast [σ]e). Here, σ should be a proof that eq τ1 τ2. Then, if e has type
τ1, the entire cast expression can be considered to have type τ2. See the typing rules in
section 3.3.

8 Christopher League and Stefan Monnier

e ::= x | n | e1 +e2 | f | e1 e2 | e [τ] | 〈e1, ...,en〉 | e1 @e2 [σ] | e1 @e2 [σ]← e3
| e # 〈e1, ...,en〉 | {l1 =e1, ..., ln =en} | e# l [σ] | cast [σ]e | [τ1, e . τ2]
| open e1 as [α, x] in e2 | folde as τ | unfolde

f ::= λx :τ.e | Λα :σ. f

Fig. 4. LITL term syntax.

3.2 Dynamic semantics

The dynamic semantics of LITL are defined in terms of a small-step reduction ;. We
distinguish a subset of the expressions as values. The primitive reduction rules are the
only enlightening part; the definition of values and congruence rules are available in
appendix A.

Primitive reductions e ; e′

n1 +n2 ; n3 where n3 = n1 +n2
(1)

(λx : .e) v ; e[v/x]
(2)

(Λα : . f) [τ] ; f [τ/α]
(3)

cast []v ; v
(4)

open [τ, v .] as [α, x] in e ; e[v/x][τ/α]
(5)

unfold(foldv as τ) ; v
(6)

〈v1, ...,vn〉@ i []← v′ ; 〈v1, ...,vi,v′,vi+2, ...,vn〉
(7)

〈v1, ...,vn〉 # 〈v′1, ...,v
′
m〉; 〈v1, ...,vn,v′1, ...,v

′
m〉

(8)
〈v1, ...,vn〉@ i [] ; vi+1

(9)

{l1 =v1, ..., ln =vn}# li [] ; vi
(10)

3.3 Static semantics

To specify the static semantics of this language, one more definition will be needed:

Fixpoint append (n : nat) (f g : nat→ Ty) (i : nat) { struct i } : Ty ≡
match i with O⇒ (match n with O⇒ g O | ⇒ f O end)
| S i⇒match n with O⇒ g (S i)

| S n⇒ append n (λx. f (S x)) g i
end

end.

The judgments are ∆ `CIC τ : σ from the type language and ∆ ; Γ ` e : τ for term forma-
tion. The environment ∆ maps type variables to their kinds, while Γ maps term variables
to their types. LITL enjoys the subject reduction and progress properties; proofs are in
appendix B.

Typed Compilation Against Non-Manifest Base Classes 9

Term formation ∆ ; Γ ` e : τ

∆ `CIC Γ(x) : Ty
∆ ; Γ ` x : Γ(x)

(11) ∆ ; Γ ` n : snat n̂
(12)

∆ ; Γ ` e1 : snat τ1
∆ ; Γ ` e2 : snat τ2

∆ ; Γ ` e1 +e2 : snat (plus τ1 τ2)

(13)
∆ `CIC τ : Ty
∆ ; Γ,x :τ ` e : τ′

∆ ; Γ ` λx :τ.e : arw τ τ′
(14)

∆ `CIC σ : SET ∆,α :σ ; Γ ` f : τ α 6∈ ∆
∆ ; Γ ` Λα :σ. f : all (λα :σ.τ)

(15)
∆ ; Γ ` e1 : arw τ′ τ
∆ ; Γ ` e2 : τ′

∆ ; Γ ` e1 e2 : τ

(16)

∆ ; Γ ` e : all τ′ ∆ `CIC τ : σ′
∆ ; Γ ` e [τ] : τ′ τ

(17)
∆ `CIC σ : eq τ1 τ2
∆ ; Γ ` e : τ1

∆ ; Γ ` cast [σ]e : τ2

(18)

∆ `CIC τ1 : σ ∆ `CIC τ2 : σ→ Ty
∆ `CIC σ : SET ∆ ; Γ ` e : τ2 τ1

∆ ; Γ ` [τ1, e . τ2] : ex τ2

(19)
∆ ; Γ ` e : ex τ ∆ `CIC τ′ : Ty
∆,α :σ ; Γ,x :(τ α) ` e′ : τ′
∆ ; Γ ` open e as [α, x] in e′ : τ′

(20)

∆ ; Γ ` e : τ (mu τ)
∆ ; Γ ` folde as τ : mu τ

(21) ∆ ; Γ ` e : mu τ
∆ ; Γ ` unfolde : τ (mu τ)

(22)

∆ ; Γ ` ei : τ î ∀ i < n
∆ ; Γ ` 〈e0, ...,en−1〉 : tup n̂ τ

(23)

∆ ; Γ ` e1 : tup σ1 τ1 ∆ ; Γ ` e2 : snat σ2 ∆ `CIC σ : lt σ2 σ1
∆ ; Γ ` e1 @e2 [σ] : τ1 σ2

(24)

∆ ; Γ ` e1 : tup σ1 τ1 ∆ ; Γ ` e2 : snat σ2
∆ ; Γ ` e3 : τ1 σ2 ∆ `CIC σ : lt σ2 σ1

∆ ; Γ ` e1 @e2 [σ]← e3 : tup σ1 τ1

(25)

∆ ; Γ ` e : tup τ1 τ2 ∆ ; Γ ` 〈e1, ...,en〉 : tup τ′1 τ′2
∆ ; Γ ` e # 〈e1, ...,en〉 : tup (plus τ1 τ′1) (append τ1 τ2 τ′2)

(26)

∆ ; Γ ` ei : τi ∧ τ l̂i = Some τi ∀ i < n
l 6∈ l⇒ τ l̂ = None

∆ ; Γ ` {l0 =e0, ..., ln−1 =en−1} : dict τ

(27)

∆ ; Γ ` e : dict τ
∆ `CIC σ : eq (τ l̂) (Some τ′)

∆ ; Γ ` e# l [σ] : τ′
(28) ∆ ; Γ ` e : τ τ =βηι τ′

∆ ; Γ ` e : τ′
(29)

10 Christopher League and Stefan Monnier

4 Typed compilation of classes

We now return to the running example, whose Links translation was provided in fig-
ure 3. In this section, we will develop the typed encoding of that example in stages,
showing additionally how objects are created from classes, and how various implemen-
tations of the base class circle can be specified.

4.1 Class representation

Recall that in Links, CircleBBox was represented as a function that generates a new
class from a given one. The class argument was depicted as a triple 〈sz,vt,dc〉. We
know very little about this (non-manifest) base class: the size and layout of the vtable
(vt) are unknown. We just know that the dictionary (dc) contains bindings for the three
known methods: center, radius, and area. Moreover, the dictionary maps the method
names to offsets that may be applied to the vt to select functions of the correct type.
Many different representations of this base class are possible.

The components of the class triple must be typed, so we begin by supposing that sz

has type snat n (for some n), that vt has type tup n f (for some f), and finally that dc

has type dict g (for some g). These three parameters (n, f , and g) uniquely specify the
representation of a class:

Definition Rep : SET ≡ (nat × (Ty→ nat→ Ty) × (sym→ option Ty)).
Definition size ≡ λr : Rep. match r with (n, ,)⇒ n end.
Definition tupfn ≡ λr : Rep. match r with (, f ,)⇒ f end.
Definition dictfn ≡ λr : Rep. match r with (, ,g)⇒ g end.

We have made one small departure from the description above: the type of the tuple
function f includes an extra Ty argument. This is because the elements of the tuple are
methods, or functions over an explicit self parameter. The Ty argument is the type of
self. This cannot be fixed in one place, but must be a parameter because the method will
be reused in derived classes with different types for self. We will demonstrate how this
works in section 4.3.

Let us specify two distinct representations of circle, the base class in our example.
The methods use floating-point types, which we have not defined formally, but we can
suppose that they exist:

Parameter float : Ty.
Definition fpoint : Ty ≡ tup2 float float.
Definition frect : Ty ≡ tup2 fpoint fpoint.

Additionally, fpoint is a pair of floats, and frect is a pair of points (for the bounds

method). Here is the simplest representation, where the three methods appear in order
in the vtable, with nothing extra:

Definition circA rep : Rep ≡
(3, λself . ith (arw self fpoint :: arw self float :: arw self float :: nil),
lookup ((center, snat 0) :: (radius, snat 1) :: (area, snat 2) :: nil)).

Typed Compilation Against Non-Manifest Base Classes 11

With this representation, we have the following equivalences in CIC:

size circA rep =βηι 3
dictfn circA rep center =βηι 0

tupfn circA rep τ 0 =βηι arw τ fpoint

We can encode a more complex representation, where the methods appear in different
slots, and some slots are taken up by unknown values:

Definition circB rep : Rep ≡
(5, λself . ith (arw self (ex snat) :: arw self float :: arw self fpoint ::

snat 0 :: arw self float :: nil),
lookup ((radius, snat 4) :: (area, snat 1) :: (center, snat 2) :: nil)).

Here, slots 0 and 3 are taken up by other values; one of them is not even a function.
Still, the dictfn tells us where to find the three circle methods.

4.2 Class specification

Now, how do we ensure that the three Rep components (n, f , g) correspond with one
another? The constraint, roughly, is that for each method m, there exists some j : nat
such that j < n and g m = Some (snat j) and f j = τ where τ is the expected type of the
method. We can encode precisely this property in CIC:

Inductive HasMethod (r : Rep) (m : sym) (t : Ty) : SET ≡
method : Π i : nat. lt i (size r)→ eq (dictfn r m) (Some (snat i))→
(Πself .eq (tupfn r self i) (arw self t))→ HasMethod r m t.

Notice that the offset i is specified in the method constructor, but does not appear in
the HasMethod term itself. This is a form of dependent pair, and thanks to the depen-
dent elimination feature of CIC, we can create selectors that mimic the dot notation
described by Cardelli and Leroy [6]. Here is the term to fetch the offset:

Definition offset ≡ λr m t. λp : HasMethod r m t.
match p with method i pf dc tp⇒ i end.

The other selectors have return types that include the offset of the parameter itself.

Definition proof ≡ λr m t. λp : HasMethod r m t.
match p as q return lt (offset q) (size r) with method i pf dc tp⇒ pf end.

Definition dicteq ≡ λr m t. λp : HasMethod r m t.
match p as q return eq (dictfn r m) (Some (snat (offset q)))
with method i pf dc tp⇒ dc end.

Definition tupeq ≡ λr m t. λp : HasMethod r m t.
match p as q return Πs.eq (tupfn r s (offset q)) (arw s t)
with method i pf dc tp⇒ tp end.

So, if we had some evidence that a representation r has a method center returning an
fpoint, it would be expressed as a term p :HasMethod r m fpoint. We can tuple several
HasMethod terms to create a signature for a class:

12 Christopher League and Stefan Monnier

Definition circ signature ≡ λr.
(HasMethod r center fpoint × HasMethod r radius float×
HasMethod r area float).

Now we create a term to use as evidence that circB rep meets the circ signature. It
consists of proofs that the indices in the dictionary are less than the tuple size, that the
types in the vtable match the signature, and so on.

Definition self equal ≡ λ t s. refl equal (arw s t).
Definition circB witness : circ signature circB rep ≡
(method circB rep center (le S (le S (le n 3))) (refl equal) (self equal fpoint),
method circB rep radius (le n 5) (refl equal) (self equal float),
method circB rep area (le S (le S (le S (le n 2)))) (refl equal) (self equal float)).

Not all of the method parameters need to be specified, thanks to Coq’s implicit argu-
ments feature. The offset of each method, for example, is inferred from the proof term.
The center method appears at offset 2, so we must show that 2 < 5. The lt relation in
the Coq library is specified in terms of le (less than or equal): lt i n≡ le (S i) n. The term
le n 3 is the proof of 3 ≤ 3, and the two le S constructors transform that into a proof
of 3 ≤ 5 or, equivalently, 2 < 5. We define projections over circ signature types, to be
used later in examples:

Definition circ center : Πr.circ signature r→ HasMethod r center fpoint ≡
λr p. match p with (ce,ra,ar)⇒ ce end.

Definition circ radius : Πr.circ signature r→ HasMethod r radius float ≡
λr p. match p with (ce,ra,ar)⇒ ra end.

Definition circ area : Πr.circ signature r→ HasMethod r area float ≡
λr p. match p with (ce,ra,ar)⇒ ar end.

4.3 Object types and method invocation

Now that we can encode class representations (and constraints on them), we are ready
to define the types of objects. In this section, we will represent an object as a pair
containing the dictionary and the vtable. We ignore object fields throughout this work,
because they are orthogonal. Also, we mentioned before that in Moby and OCaml,
where classes can be functor parameters, it is not necessary to package the dictionary
with each object. In section 5, we demonstrate an optimized encoding that separates the
two components, so that dictionary lookups can be hoisted to the module level. Here is
the type of an object pair, given a class representation and the type of self:

Definition objrep : Rep→ Ty→ Ty ≡ λr self .
tup2 (dict (dictfn r)) (tup (size r) (tupfn r self)).

The self type is resolved with a fixpoint, indicating that the self parameter must be an
object of exactly the same type as the object containing the method.

Definition selfty : Rep→ Ty ≡ λr. mu (objrep r).

Typed Compilation Against Non-Manifest Base Classes 13

let invoke radius = λx :objty circ signature.
open x as [r, x1] in open x1 as [p, x2] in let x3 = unfoldx2 in

let dc = x3 @0 [lt02] in let vt = x3 @1 [lt12] in
let j = dc# radius [dicteq (circ radius p)] in
let f = vt@j [proof (circ radius p)] in
let f = cast [tupeq (circ radius p) (selfty r)] f in f x2

Fig. 5. Code to invoke the radius method on an object x.

Finally, we must hide the representation type. Two existential quantifiers are used here.
The outer one hides the Rep, while the inner one hides the evidence that the representa-
tion matches some specified signature.

Definition objty′′ : Πsig : Rep→ SET.Πr.sig r→ Ty ≡ λsig r . selfty r.
Definition objty′ : (Rep→ SET)→ Rep→ Ty ≡ λsig r. ex (objty′′ sig r).
Definition objty : (Rep→ SET)→ Ty ≡ λsig. ex (objty′ sig).

So, the type of a circle object is objty circ signature. In more conventional notation, the
object encoding is:

∃r :Rep.∃p :circ signature r.µα :Ty.objrep r α

(It is not necessary to split the existentials over three Coq definitions, but it allows for
shorter annotations in some programs.)

Now we present a function that invokes the radius method on an object x. In sec-
tion 2, with untyped terms, this was written simply as ((x@1)@((x@0)# radius)) x.
Figure 5 contains a function that takes x as a parameter, and calls radius. The code is
shown in A-normal form [18] for readability, but this is not essential. Apart from the
open-open-unfold sequence in the beginning, the burden imposed by the type system
includes the proof annotations on tuple selection and dictionary lookup, and the cast
expression just before the (virtual) function call. The terms lt02 and lt12 in the select
statements refer to these proof constants:

Definition lt02 : lt 0 2 ≡ le S (le n 1).
Definition lt12 : lt 1 2 ≡ le n 2.

If the objects contained fields, then these proofs would depend on the number of fields
in the tuple. To support this, the existential would also need to hide the size of the tuple,
m, and a proof of lt 1 m (from which the proof of lt 0 m could be derived).

These type operators and proof annotations buy quite a lot in terms of flexibility
and safety. In languages that support non-manifest base classes, the representations of
classes and objects have complex invariants that are now enforced by the type system
of the intermediate language.

4.4 Class types and instantiation

The type of a class is slightly more complex because the vtable in the class plays a
different role than the vtable embedded in an object (even though they are the same data

14 Christopher League and Stefan Monnier

let new circ = λc0 :classty circ signature.
open c0 as [r, c1] in open c1 as [p, c2] in
let dc = c2 @1 [lt13] in let ms = c2 @2 [lt23] in
let vt = ms [r] [p] in let x = fold 〈dc,vt〉 as objrep r in

[r, [p, x . objty′′ circ signature r] . objty′ circ signature]

Fig. 6. Create a new circle object, given a circle class.

structure at run time). Methods must be inheritable. This means that the self parameter
will have different types at different points in the hierarchy. Therefore, in the class, the
vtable must be parameterized by the type of self. The only restriction is that self must
have at least the methods defined in the class in which the method is defined. We call
this parameterized vtable a method suite:

Definition methsuite′′ : Πsig : Rep→ SET.Rep→Πr′ : Rep.sig r′→ Ty ≡
λsig r r′ . tup (size r) (tupfn r (selfty r′)).

Definition methsuite′ : (Rep→ SET)→ Rep→ Rep→ Ty ≡
λsig r r′. all (methsuite′′ sig r r′).

Definition methsuite : (Rep→ SET)→ Rep→ Ty ≡
λsig r. all (methsuite′ sig r).

Notice the subtle difference in usage between the representations r and r′. The former
is the representation of the current class (and determines the methods that appear in
the tuple), while the latter is the representation of some subclass that is inheriting these
methods. Its only impact is on the type of the self parameter.

We noted previously that each class is represented as a triple. Here is the definition
of the triple, in terms of the class signature sig and representation r.

Definition classtup : (Rep→ SET)→ Rep→ Ty ≡
λsig r. tup3 (snat (size r)) (dict (dictfn r)) (methsuite sig r).

As with object types, we must conceal the representation along with the proof that it
meets the specified signature.

Definition classty′′ : Πsig : Rep→ SET.Πr.sig r→ Ty ≡ λsig r . classtup sig r.
Definition classty′ : (Rep→ SET)→ Rep→ Ty ≡ λsig r. ex (classty′′ sig r).
Definition classty : (Rep→ SET)→ Ty ≡ λsig. ex (classty′ sig).

This way, both the ‘A’ and ‘B’ implementations of the circle class can appear to have
the same type: classty circ signature.

Figure 6 contains an implementation of the ‘new’ operator, that creates a new object
from a class. It instantiates the method suite with the representation of the provided
class, so that the methods will accept the new object as the self argument. Then, the
dictionary and vtable are paired together, folded, and re-packaged. As before, lt13 and
lt23 stand for constant proof terms.

4.5 Class declarations

These sophisticated representations of class and object types would be for naught if we
are unable to implement a circle class in the first place. In this section, we demonstrate

Typed Compilation Against Non-Manifest Base Classes 15

let circB =

let dc = {radius=4,area=1,center=2} in

let ms = Λr :Rep.Λp :circ signature r.
〈λs :selfty r. /* code of type ex snat */,λs :selfty r. /* code of type float */,
λs :selfty r. /* code of type fpoint */,0,λs :selfty r. /* code of type float */ 〉 in

let c = 〈5,dc,ms〉 in
[circB rep, [circB witness, c . classty′′ circ signature circB rep] . classty′ circ signature]

Fig. 7. An implementation of the circle class signature.

that the type classty circ signature is habitable: see the definition of the ‘B’ circle class
in figure 7. We do not provide complete implementations of the methods: for that, we
would need to define floating-point operations and fields.

With this class, we can now connect together the code in the two previous figures
like this: invoke radius (new circ circB). This creates a new circle from circB, invokes
the radius method of that object, and returns a float. We leave it as an exercise to define
a different implementation circA, using the circA rep defined on page 10.

4.6 Extending an unknown base class

Now we have come to the heart of the whole problem: typed compilation against a non-
manifest base class. Our running example extends some unknown class (that matches
the circle signature) by overriding area and adding a new method bounds. In CIC, we
can define a signature for this derived class, bbox:

Definition bbox signature ≡ λr.
(HasMethod r center fpoint × HasMethod r radius float×
HasMethod r area float × HasMethod r bounds frect).

The representation of the derived class will of course depend on the layout of its parent.
Still, we can define a function to produce a bbox representation, given another repre-
sentation r that matches the circ signature:

Definition bbox rep : Πr : Rep.circ signature r→ Rep ≡ λr p.
(plus 1 (size r), λself . append (size r) (tupfn r self) (ith (arw self frect :: nil)),
lookup ((center, snat (offset (circ center p))) ::

(radius, snat (offset (circ radius p))) :: (area, snat (offset (circ area p))) ::
(bounds, snat (size r)) :: nil)).

This works by retrieving the offsets of the inherited methods from the witness p, and
placing the bounds method in slot n—the size of the parent representation. The tuple
function uses append to join the type of the new method with the types of the parent.
With this (parameterized) representation, we have the following:

size (bbox rep circB witness) =βηι 6
dictfn (bbox rep circB witness) center =βηι Some (snat 2)

dictfn (bbox rep circB witness) bounds =βηι Some (snat 5)
tupfn (bbox rep circB witness) τ 5 =βηι arw τ frect

16 Christopher League and Stefan Monnier

The next step is to prove that the extended representation matches the bbox signature.
This is more difficult than it may seem at first. It depends critically on the semantics of
append. First, extending a tuple with new elements does not alter the types of existing
elements. Second, the new elements can be retrieved by adding the size of the original
tuple to their offsets. These properties are expressed by the following Coq lemmas:

Lemma append semantics1 : Π i n. lt i n→Π f g.eq (append n f g i) (f i).
Lemma append semantics2 : Πk n f g.eq (append n f g (plus k n)) (g k).

With these properties, we can prove the following term:

Definition bbox witness : Πr.Πp : circ signature r.bbox signature (bbox rep p).

As needed, this shows that the extended representation matches the bbox signature. (To
conserve space, proofs for these properties have been moved to appendix C.)

Just one more definition is needed to extend a non-manifest base class. We instanti-
ate the super class dictionary with the representation of the derived class. This is what
permits us to pass bbox objects to those circle methods. To do this, we must prove that
the derived representation still matches the super class signature. Fortunately, this is
trivial: just a repackaging of the HasMethod properties, to drop the one referring to the
bounds method:

Definition bbox2circ : Πr.bbox signature r→ circ signature r ≡
λr p. match p with (ce,ra,ar,bo)⇒ (ce,ra,ar) end.

Figure 8 contains the complete code for extending an unknown base class. It corre-
sponds to the OCaml functor given in the introduction, and is a typed version of the
Links code in section 2. Most of the non-trivial typing aspects have already been ex-
plained. Look for occurrences of bbox rep, bbox witness, and bbox2circ in the typing
annotations. In our example, the area method included a super call. We omitted the call
itself in the figure (along with the rest of the method bodies), but it works very simply.
At the point where we define area m′, we have already selected the area method from
vt, the super class vtable. Within the body of area m′, we would apply area m to s to
call the super-class method.

Also, notice the cast applied to the overridden area method before updating the
vtable. It is the inverse of the cast used when selecting a method from the vtable. We
just defined area m′, so it has an arrow type to begin with. But the designated slot of
the vtable has an opaque type, literally tupfn r (selfty r′′) (offset (circ area p)), which
cannot be reduced because r is a variable. But we can use (a symmetric version of) the
tupeq property to cast from the concrete to the opaque, and then update that slot of the
vtable.

5 Extensions

This section explores ways to extend the basic techniques in several directions, giving
some idea of the versatility of LITL.

Typed Compilation Against Non-Manifest Base Classes 17

let circle bbox = λc :classty circ signature.
open c as [r, c] in open c as [p, c] in
let sz = c@0 [lt03] in let dc = c@1 [lt13] in let ms = c@2 [lt23] in
let ci = dc#center [dicteq (circ center p)] in
let ri = dc# radius [dicteq (circ radius p)] in
let ai = dc#area [dicteq (circ area p)] in
let dc′ = {center=ci, radius= ri,area=ai,bounds=sz} in

let ms′ = Λr′′ :Rep.Λp′′ :bbox signature r′′.
let vt = ms [r′′] [bbox2circ p′′] in
let bounds m = λs :selfty r′′. /* code of type frect */ in
let area m = vt@ai [proof (circ area p)] in
let area m = cast [tupeq (circ area p) (selfty r′′)]area m in

let area m′ = λs :selfty r′′. /* code of type float */ in
let area m′ = cast [sym eq (tupeq (circ area p) (selfty r′′))]area m′ in

let vt′ = vt@ai [proof (circ area p)]← area m′ in

vt′ # 〈bounds m〉 in
let c′ = 〈1+sz,dc′,ms′〉 in
let c′ = [bbox witness p, c′ . classty′′ bbox signature (bbox rep p)] in
[bbox rep p, c′ . classty′ bbox signature]

Fig. 8. Code to extend a non-manifest base class.

let upcast = λx :objty bbox signature.
open x as [r, x] in open x as [p, x] in
[r, [bbox2circ p, x . objty′′ circ signature r] . objty′ circ signature]

Fig. 9. To upcast a bbox to a circle, we open and repackage the object.

5.1 Encoding subsumption as type coercions

Object-oriented languages enjoy subsumption: a context expecting an object of type
t will be satisfied with an object of some subtype of t. The precise rules about what
constitutes a subtype, and where subsumption may be used, differ with each language.

Our intermediate language does not directly support subtyping. Nevertheless, if we
examine object types of two classes in a subclass relationship, we notice they differ
only in what is known about the (hidden) representation. It is always possible to open
and repackage the object with less information about its representation. The example
in Fig. 9 casts a bbox object to a circle (its super class). This is done entirely with type
coercions, so it has no cost at run time. The bbox2circ operator, defined on page 16,
coerces the witness from type bbox signature r to type circ signature r, by dropping
the information about the bounds method.

This alone is sufficient to support many object-oriented languages, in which sub-
sumption is really just forgetting information about some of the methods or fields in
the object. This is equivalent to so-called width subtyping on records. Some languages
(including OCaml) support limited forms of depth subtyping, where the types of the
fields or methods themselves can change, in a co- or contra-variant manner.

Subtyping can always be encoded using explicit coercions, but that would have
a negative impact on the efficiency of our object code—unless the coercions are just

18 Christopher League and Stefan Monnier

type-level operators, like the open and pack in Fig. 9. We believe it would be possible
to define an inductive relation subtype : Ty→ Ty→ SET in CIC, whose constructors
implement the usual subtyping rules. A term that inhabits subtype τ1 τ2 would thus be
equivalent to a meta-logical derivation of τ1 ≤ τ2. Our cast operator would be extended
to accept proofs of subtype τ1 τ2 rather than just eq τ1 τ2. This is reminiscent of the
explicit coercion techniques proposed by Crary [14], but formulating the techniques
within our framework remains an avenue for future work.

5.2 Removing the dictionary from object representations

One of the advantages of Links, as a common IL for object-oriented languages, is its
pay-as-you-go efficiency. Languages that do not need dictionaries to find method offsets
at run time are not required to use them. For example, if method offsets are known at
compile time, they can be hard-coded into the object types, without needing dictionaries
or even symbols. Here are updates to some of the definitions from the last section.

Definition FixedRep : SET ≡ (nat × (Ty→ nat→ Ty)).
Inductive FixedMethod (r : FixedRep) (i : nat) (t : Ty) : SET ≡

fmethod : lt i (fst r)→ (Πself : Ty.eq (snd r self i) (arw self t))→
FixedMethod r i t.

We have just removed the dictionary function from the representation. The offset i now
appears in the FixedMethod, rather than remaining hidden. The signature for a circle can
be expressed as follows—note the replacement of method names by method offsets:

Definition circ fsig : FixedRep→ SET ≡ λr.
(FixedMethod r 0 fpoint × FixedMethod r 1 float × FixedMethod r 2 float).

The object type is the same as before, but with offsets now exposed in the bound of one
of the existential quantifiers. Supporting link-time (but not run-time) use of dictionaries
is more involved. If classes can be module parameters, but modules are not recursive,
then all the dictionary lookups ought to be lifted to the top level in each module, outside
of any loops. In this case, dictionaries should not be packaged within objects, but should
just be module parameters.

5.3 Supporting mixins and traits

Bracha and Cook [3] define a mixin as an “abstract subclass; i.e., a subclass definition
that may be applied to different super classes to create a related family of modified
classes.” This seems similar in spirit to the parameterized class we defined. The techni-
cal difference is that “mixins properly extend the class that they are applied to” [17]. In
our example, base class methods not specified in the CIRCLE signature remain hidden
in the derived class. In contrast, a mixin can extend an unknown base class, where any
methods unspecified by the mixin are preserved in the interface of the derived class.

Following our example, a BboxMixin could take any class with center and radius

methods, and add a bounds method. Any other super class methods (area, move, en-

large, etc.) would be preserved in the sub class. A mixin thus defines a representation
transformer that overlays an existing dictionary with some new methods.

Typed Compilation Against Non-Manifest Base Classes 19

With simple parameterized classes, the signature can be specified as part of the
definition. With mixins, this is not so simple. The signature will not be known until the
point of instantiation. We do, however, need to know a few things about the transformed
representation. First, it must have a bounds method, which returns a pair of points (type
frect). Second, any methods it previously defined are preserved. There is one exception:
if it had a bounds method previously, that one is shadowed by the newer definition.
Thus, we must be able to say that a method label is not equal to bounds:

Definition noteq : sym→ sym→ PROP ≡ λm1 m2.
Πk : SET.Π f g : k. ifeq m1 m2 f g = g.

Definition bbmix sig : (Rep→ TYPE)→ Rep→ TYPE ≡ λsig r. Πr′.
(HasMethod r′ bounds frect→Πm t.noteq m bounds→

HasMethod r m t→ HasMethod r′ m t)→ sig r′.

The above definition plays the role of a signature for the mixin, where the sig parameter
is the ultimate signature, provided when the mixin is applied to a super class; r is the
super class representation, and r′ is the subclass representation.

Traits are another, similar mechanism for code reuse [29]. A trait is just a set of
named methods, that can depend on some other (specified) methods. “The main differ-
ence between mixins and traits is that mixins force a linear order in their composition”
[16]. We have not yet determined whether our encoding of mixins extends to traits, but
we intend to pursue this as future work.

6 Related work

There is a long history of encoding objects and classes in typed λ-calculi and other non-
object-based representations [4]. Several recent encodings are specifically designed for
use in certifying compilers, where run-time efficiency is a concern [8, 13, 19, 21]. They
each have their advantages—see [8] or [21] for comparisons—but none of them support
separating offset determination from method retrieval.

The encoding presented in this paper is a natural generalization of the one developed
by League et al. [21] for Java. They specified tuples as sequences of rows [28], where
the tail of a sequence could be abstracted by a type variable. An object with a method
in slot zero returning τ would have the type:

∃ρ :Ty→ R1.µα :Ty.〈α→ τ ; ρ α〉

where the quantified variable ρ conceals the types of any additional methods. Compare
that to the encoding introduced in this paper:

∃n :nat.∃ f :Ty→ nat→ Ty.∃p :(0 < n∧ (∀β :Ty. f β 0 = arw β τ)).
µα :Ty. tup n (f α)

This is the ‘fixed’ representation from section 5.2. In both cases, an existential hides a
specification of the elements of the tuple (ρ above, f below), parameterized by the type
of the explicit self argument. Both encodings use a recursive type in the same way: to
equate the type of the self argument with the type of the object containing the methods.

20 Christopher League and Stefan Monnier

Finally, both encodings reveal (in different ways) the types of known methods in the
tuple.

Stone [31] developed a Calculus of Objects and Indices (COI) which has some
similarities to our work. Although it is an object calculus (method invocation is atomic)
Stone says, “it may be possible to use the ideas here to obtain a typed variant [of Links].”
Like our language, COI supports dictionaries and first-class indices. Rather than single-
ton types, indices “have types of the form τ⇒σ; this type classifies offsets that access
a component of type σ within an object of type τ.”

As specified, COI is not suitable as an intermediate language for compilers, or as a
target language for proof-carrying code. It takes objects and object extension as primi-
tive, and encodes classes in terms of objects. The class encoding does not support super
calls, though it seems possible to add them. Due to the granularity of the calculus, op-
timizations like caching method pointers and devirtualization are not expressible.

Pushing COI to a lower level while maintaining soundness may be challenging. As
is, its soundness relies on distinguishing between exact and inexact object types. What
becomes of these concepts when objects are no longer primitive? Often, decomposing
objects into tuples and functions opens up unintended ways of accessing them, leading
to unsoundness [22]. It would be very interesting to see the impact of the COI design at
a lower level.

7 Conclusion and future directions

We have developed LITL, a sound, low-level intermediate language with dictionaries,
tuples, functional update, and tuple extension. Fisher et al. [17] showed that these prim-
itives are useful for compiling various object-oriented languages, with different object
models and notions of inheritance. Dictionaries support link-time or run-time determi-
nation of method offsets, for languages where the layout of a base class may not be
known at compile time.

Following Shao et al. [30], the type system of LITL is embedded in the Calculus of
Inductive Constructions [12]. Our reliance on CIC permits flexible reasoning about the
offsets of methods, which are now first-class values with singleton types constructed
from natural numbers.

We proposed a simple example in OCaml—where a super class is provided as a
functor parameter—and showed by example how to encode objects, classes, method
dispatch, new, and inheritance from a non-manifest base class. Our technique supports
width (but not depth) subtyping using type coercions. Alternative representations are
possible, where the dictionary is omitted (because offsets are already known) or passed
separately from the object.

In the future, we expect to support depth subtyping, using a technique outlined in
section 5.1. Furthermore, we intend to choose a small source language with several of
these advanced object-oriented features and specify a complete type-preserving trans-
lation.

Bibliography

[1] A. W. Appel. Foundational proof-carrying code. In Proc. IEEE Symp. on Logic in
Computer Science (LICS), pages 247–258, June 2001.

[2] H. Barendregt. Typed lambda calculi. In S. Abramsky, D. Gabbay, and
T. Maibaum, editors, Handbook of Logic in Computer Science, volume 2. Oxford,
1992.

[3] G. Bracha and W. Cook. Mixin-based inheritance. In Proc. Conf. on Object-
Oriented Programming Systems, Languages, and Applications, pages 303–311,
October 1990.

[4] K. B. Bruce, L. Cardelli, and B. C. Pierce. Comparing object encodings. Infor-
mation and Computation, 155(1–2):108–133, 1999.

[5] K. B. Bruce, A. Fiech, and L. Petersen. Subtyping is not a good ‘Match’ for object-
oriented languages. In Proc. European Conf. Object-Oriented Prog., volume 1241
of LNCS, pages 104–127, Berlin, 1997. Springer-Verlag.

[6] L. Cardelli and X. Leroy. Abstract types and the dot notation. In Proc. IFIP
Working Conf. on Programming Concepts and Methods, pages 466–491, Israel,
April 1990.

[7] L. Cardelli and J. C. Mitchell. Operations on records. In C. A. Gunter and J. C.
Mitchell, editors, Theoretical Aspects of Object-Oriented Programming, Founda-
tions of Computing Series. MIT Press, 1994.

[8] J. Chen and D. Tarditi. A simple typed intermediate language for object-oriented
languages. In Proc. Symp. on Principles of Programming Languages. ACM, Jan-
uary 2005.

[9] C. Colby, P. Lee, G. C. Necula, F. Blau, K. Cline, and M. Plesko. A certifying
compiler for Java. In Proc. Conf. on Programming Language Design and Imple-
mentation, Vancouver, June 2000. ACM.

[10] Coq Development Team. The Coq Proof Assistant Reference Manual. INRIA,
version 8.0 edition, June 2004.

[11] T. Coquand and G. Huet. The calculus of constructions. Information and Compu-
tation, 76:95–120, 1988.

[12] T. Coquand and C. Paulin-Mohring. Inductively defined types. In Proceedings of
Colog ’88, volume 417 of Lecture Notes in Computer Science. Springer, 1990.

[13] K. Crary. Simple, efficient object encoding using intersection types. Technical
Report CMU-CS-99-100, Carnegie Mellon University, Pittsburgh, January 1999.

[14] K. Crary. Typed compilation of inclusive subtyping. In Proc. Int’l Conf. Func-
tional Programming, September 2000.

[15] K. Fisher and J. Reppy. The design of a class mechanism for Moby. In Proc. Conf.
on Programming Language Design and Implementation, New York, 1999. ACM.

[16] K. Fisher and J. Reppy. A typed calculus for traits. In Proc. Int’l Workshop on
Foundations of Object-Oriented Languages, January 2004.

[17] K. Fisher, J. Reppy, and J. G. Riecke. A calculus for compiling and linking classes.
In Proc. European Symp. on Programming, pages 135–149, 2000.

22 Christopher League and Stefan Monnier

[18] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of compil-
ing with continuations. In Proc. Conf. on Programming Language Design and
Implementation, pages 237–247, Albuquerque, June 1993.

[19] N. Glew. An efficient class and object encoding. In Proc. Conf. on Object-
Oriented Programming Systems, Languages, and Applications. ACM, October
2000.

[20] W. A. Howard. The formulae-as-types notion of constructions. In To H.B. Curry:
Essays on Computational Logic, Lambda Calculus, and Formalism. Academic
Press, 1980.

[21] C. League, Z. Shao, and V. Trifonov. Type-preserving compilation of Feather-
weight Java. ACM Trans. on Programming Languages and Systems, 24(2):112–
152, March 2002.

[22] C. League, Z. Shao, and V. Trifonov. Precision in practice: A type-preserving Java
compiler. In G. Hedin, editor, Proc. Int’l Conf. on Compiler Construction, volume
2622 of Lecture Notes in Computer Science, pages 106–120, Warsaw, April 2003.
Springer.

[23] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-
Wesley, 2nd edition, 1999.

[24] D. A. Moon. Object-oriented programming with Flavors. In Proc. Conf. on
Object-Oriented Programming Systems, Languages, and Applications, page 1–8,
November 1986.

[25] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to typed assembly
language. ACM Trans. on Programming Languages and Systems, 21(3), May
1999.

[26] G. C. Necula. Proof-carrying code. In Proc. Symp. on Principles of Programming
Languages, pages 106–119, Paris, January 1997. ACM.

[27] F. Pfenning and C. Elliot. Higher-order abstract syntax. In Proc. Conf. on Pro-
gramming Language Design and Implementation, pages 199–208, 1988.

[28] D. Rémy and J. Vouillon. Objective ML: An effective object-oriented extension
to ML. Theory and Practice of Object Systems, 4, 1998.

[29] N. Schärli, S. Ducasse, O. Nierstrasz, and A. P. Black. Traits: Composable units
of behaviour. In Proc. European Conf. Object-Oriented Programming, July 2003.

[30] Z. Shao, V. Trifonov, B. Saha, and N. Papaspyrou. A type system for certified
binarios. ACM Trans. on Programming Languages and Systems, 27(1):1–45, Jan-
uary 2005.

[31] C. A. Stone. Extensible objects without labels. ACM Trans. on Programming
Languages and Systems, 26(5):805–835, September 2004.

[32] B. Stroustrup. The C++ Programming Language. Addison-Wesley, 3rd edition,
1997.

Typed Compilation Against Non-Manifest Base Classes 23

Note about the appendices: we place here some details about our system that could
not fit within the 20-page limit. Reviewers may find the details useful. If there is not
room for them in the final volume, we can make them available in a technical report on
the web.

A Dynamic semantics of LITL

This section continues the dynamic semantics of LITL by distinguishing a subset of the
terms as values:

v ::= n | f | 〈v1, ...,vn〉 | {l1 =v1, ..., ln =vn} | [τ1, v . τ2] | foldv as τ

The congruence reductions follow (primitive reductions are shown in section 3.2).

e1 ; e′1
e1 +e2 ; e′1 +e2

e ; e′

v+e ; v+e′

e1 ; e′1
e1 e2 ; e′1 e2

e ; e′

v e ; v e′
e ; e′

e [τ] ; e′ [τ]
e ; e′

folde as τ ; folde′ as τ

e ; e′

unfolde ; unfolde′
e ; e′

cast [σ]e ; cast [σ]e′
e ; e′

[τ1, e . τ2] ; [τ1, e′ . τ2]

e1 ; e′1
open e1 as [α, x] in e2 ; open e′1 as [α, x] in e2

ei ; e′i
〈v1, ...,vi−1,ei,ei+1, ...,en〉; 〈v1, ...,vi−1,e′i,ei+1, ...,en〉

e1 ; e′1
e1 @e2 [σ] ; e′1 @e2 [σ]

e ; e′

v@e [σ] ; v@e′ [σ]

e1 ; e′1
e1 @e2 [σ]← e3 ; e′1 @e2 [σ]← e3

e1 ; e′1
v@e1 [σ]← e2 ; v@e′1 [σ]← e2

e ; e′

v1 @v2 [σ]← e ; v1 @v2 [σ]← e′

e ; e′

e # 〈e1, ...,en〉; e′ # 〈e1, ...,en〉

ei ; e′i
v # 〈v1, ...,vi−1,ei,ei+1, ...,en〉
; v # 〈v1, ...,vi−1,e′i,ei+1, ...,en〉

e ; e′

e# l [σ] ; e′# l [σ]

ei ; e′i
{l1 =v1, ..., li−1 =vi−1, li =ei, li+1 =ei+1, ..., ln =en}
; {l1 =v1, ..., li−1 =vi−1, li =e′i, li+1 =ei+1, ..., ln =en}

24 Christopher League and Stefan Monnier

B Soundness proofs

The decidability of typing is almost immediate because the typing rules are mostly
syntax directed. The places where the type derivation does not follow trivially from the
syntax are:

– Rule 29 has no corresponding syntax. This does not prevent type checking from
being decidable since CIC guarantees that every expression can be reduced to a
normal form. We simply need to always normalize our type expressions.

– Rules 23 and 27 leave open the choice of τ. This actually makes type checking
undecidable. So when we type check a program we use a restriction of the above
rules such that either the type of a tuple 〈e1, ...,en〉 is inferred to be of the form
tup n̂ (ith (τ1 :: ... :: τn :: nil)) or the programmer has to annotate the tuple with its
type function τ.

Lemma 1 (Canonical forms). If v is a value and ◦ ; ◦ ` v : τ, then v must have the
form indicated by its type:

– τ =βηι snat τ1 implies that v = n
– τ =βηι arw τ1 τ2 implies that v = λx :τ1.e
– τ =βηι all τ1 implies that v = Λα :σ. f
– τ =βηι ex τ1 implies that v = [τ2, v′ . τ1]
– τ =βηι mu τ1 implies that v = foldv′ as τ1
– τ =βηι tup τ1 τ2 implies that τ1 = n and v = 〈v1, ...,vn〉
– τ =βηι dict τ1 implies that v = {l1 =v1, ..., ln =vn}

Proof. is by induction on the structure of v, and by adequacy of inductive definitions in
an empty context for the natural number and tuple cases. ut

Theorem 1 (Progress). If ◦ ; ◦ ` e : τ then either e is a value, or there exists e′ such
that e ; e′.

Proof. is by induction on the derivation of ◦ ; ◦ ` e : τ. All the cases where the toplevel
subexpressions aren’t simple values can be trivially reduced using the corresponding
congruence rule.

(11) variable. Impossible case, because environment is empty.
(12) natural number. A numeric literal is a value.
(13) addition. e = e1 +e2. By induction, either e1 is a value, or there exists e′1 such

that e1 ; e′1. Likewise, either e2 is a value, or there exists e′2. If both are values,
then they must be natural numbers (by canonical forms lemma), and we proceed
with the primitive reduction for addition. Otherwise, we use the congruence rules.

(14) functional abstraction. e = λx :σ.e0. This is a value.
(15) type abstraction. Also a value.
(16) application. e = e1 e2. Similar to addition case; by induction, either e1 is a value,

or there exists e′1 such that e1 ; e′1. If both are values, e1 must have the form
λx : τ.e0 (by canonical forms lemma), so it matches the primitive reduction rule.
Otherwise the inductive reduction goes through the congruence rules.

Typed Compilation Against Non-Manifest Base Classes 25

(17) type application. Similar.
(18) cast. Either goes through the congruence rule or primitive reduction of cast [σ]v0

to v0. (Trivial.)
(19) existential introduction. e = [τ′, e0 . τ′]. Either e0 is a value, in which case so is

the package, or e0 can be reduced, in which case we apply the reduction through
the package congruence rule.

(20) existential elimination. Similar to application and type application, including use
of canonical form of existential value.

(21) fold. Becomes a value if the sub-expression is a value, or goes through fold con-
gruence rule.

(22) unfold. Go through unfold congruence rule, or if sub-expression is a value, it must
be a fold (due to canonical forms lemma) in which case the primitive reduction
matches.

(23) tuple. Either is a value, or goes through one of the congruence rules.
(24) tuple selection. Two congruence rules are available. If both sub-expressions are

values then we need several prerequisites to use the primitive reduction. First, the
left-hand side must be a tuple value of length n (by canonical forms). Next, the
right-hand side must be a natural number (by canonical forms). Finally, the index
must be less than the length. Here we rely on the adequacy of arithmetic and lt in
an empty context. Follow the arguments in TSCB paper.

(25) functional update. Similar to previous case.
(26) tuple extension. Canonical forms guarantees the left side is a tuple, so the primi-

tive reduction applies.
(27) dictionary construction. Either a value or use a congruence rule.
(28) dictionary lookup. If e is not a value, we use the congruence rule. Otherwise, by

canonical forms e has to be a dictionary. By the typing rule of the dictionary con-
structor, we know that the dictionary typing function τ returns some τi iff applied
to one of the labels in the dictionary. Since σ is a proof that τ returns some τ′, it
follows that l is indeed one of the li of the dictionary and the primitive reduction
applies.

(29) type conversion. Trivial: the inductive hypothesis already gives us our conclu-
sion. ut

Lemma 2 (Substitution).
If ∆ ; Γ,x :v ` e : τ then ∆ ; Γ ` e[v/x] : τ.
If ∆,α :τ ; Γ ` e : τ′ then ∆ ; Γ[τ/α] ` e[τ/α] : τ′[τ/α].

Proof. is straightforward, by induction on the typing derivation. ut

Theorem 2 (Subject reduction). If ◦ ; ◦ ` e : τ and e ; e′, then ◦ ; ◦ ` e′ : τ.

Proof. is by induction on the derivation of e ; e′. All the congruence rules are proved
trivially from the induction hypothesis because they all reduce the subexpression in the
same empty context.

(1) addition. The typing rule of the redex is #13, so τ =βηι snat (plus τ1 τ2). So we
need to show that n3 has that type, using rule #12.

26 Christopher League and Stefan Monnier

(2) beta reduction. The typing derivation of the redex uses rule #16 preceded by #14,
and τ =βηι arw τ1 τ2. We use the value substitution lemma.

(3) type application. Same situation except we use the type substitution lemma.
(4) cast. This is a critical case. We know cast []e has type τ2, and e has type τ1. This

follows from the fact that we know ‘eq τ1 τ2’ and that in an empty context this can
only be true if τ1 =βηι τ2 so we can use the typing rule #29.

(5) open. This uses both substitution lemmas.
(6) unfold. Trivial.
(7) update. Trivial as well.
(8) extend. We can prove that eq append τ1 τ2 τ′2 î τ2 î for all i smaller than τ1, and

that it is equal to τ′2 î otherwise. The rest follows trivially, except that we need to
use the typing rule #29 to account for the fact that we only know equality in terms
of eq, as was the case for cast.

(9) select. Trivial.
(10) lookup. Straightforward since the core of the proof is provided as an annotation.

ut

C Proofs needed to extend an unknown base class

This is an extended development, with Coq proofs, of the reasoning in section 4.6. Our
goal there was to prove that a circ signature representation, extended with bbox rep,
matches the bbox signature. This depends critically on the semantics of append.

Specifically, extending a tuple with new elements does not alter the types of the
existing elements. We will use Coq tactics to prove this, but the resulting proof can
be expressed as a normal term in CIC. The proof refers to lt S n, a lemma in the Coq
library stating that if S n < S m then n < m.

Lemma append semantics1 : Π i n. lt i n→Π f g.eq (append n f g i) (f i).
Proof.
induction i. induction n.

intro H; inversion clear H. intros f g; apply (refl equal (f 0)).
induction n.
intro H; inversion clear H. intro H; assert (lt i n).
apply lt S n; assumption. intros f g; exact (IHi n H0 (λx. f (S x)) g). 2

The following simple lemma will express the same result in a more useful form, so that
it matches one of the properties required by HasMethod.

Lemma extension okay : Π i n. lt i n→Π f t.
(Πs.eq (f s i) (arw s t))→Πg self .eq (append n (f self) (g self) i) (arw self t).

Proof.
intros i n lt f t p g self . assert (H1 ≡ p self).
assert (H2 ≡ append semantics1 lt (f self) (g self)). exact (trans eq H2 H1). 2

With this result, we can take information about a base class tuple, and transform it into
information about a derived class tuple, to which other methods have been appended.

Typed Compilation Against Non-Manifest Base Classes 27

We will also need to extend the lt proofs within HasMethod. For a given offset (i),
known to be less than the size of the parent tuple (n), it is also of course less than the
size of the extended tuple:

Lemma lt plus bound : Π i n k. lt i n→ lt i (plus k n).
Proof.
intros i n k H. assert (L ≡ lt plus trans i n k H).
rewrite (plus comm k n). assumption. 2

This was a simple corollary of lt plus trans in the Coq library, whose result is commu-
tative (plus n k).

These lemmas have helped us prove things about inherited methods. To prove any-
thing about new methods (such as bounds), we will need another lemma about the
semantics of append. It describes what happens when the index is ≥ n.

Lemma append semantics2 : Πk n f g.eq (append n f g (plus k n)) (g k).
Proof.
induction k. induction n.

intros f g; exact (refl equal (g 0)).
intros f g; exact (IHn (λx. f (S x)) g).

induction n.
intros f g; exact (f equal g (plus 0 r (S k))).
intros f g. assert (eq

(append n (λx. f (S x)) g (plus k (S n)))
(append n (λx. f (S x)) g (plus (S k) n))).

apply (f equal (append n (λx. f (S x)) g) (sym eq (plus Snm nSm k n))).
apply (trans eq H (IHn (λx. f (S x)) g)). 2

Again, with transitivity of equality, we coerce this into a more usable form.

Lemma extension effect : Πk g t.(Πself .eq (g self k) (arw self t))→
Πn f self .eq (append n (f self) (g self) (plus k n)) (arw self t).

Proof.
intros k g t p n f self . assert (L ≡ append semantics2 k n (f self) (g self)).
assert (M ≡ p self). exact (trans eq L M). 2

Finally, we can prove that a representation matching circ signature can be extended by
bbox rep to a representation matching bbox signature. To show how this proof may be
adapted to other class signatures, we have defined tacticals for the two kinds of cases:
inherited methods and new methods.

Definition bbox witness : Πr.Πp : circ signature r.bbox signature (bbox rep p).
Proof.
let inherit ≡ λname ty sel.

apply (method (bbox rep p) name
(lt plus bound 1 (proof (sel r p))) (refl equal (Some (snat (offset (sel r p)))))
(extension okay (proof (sel r p)) (tupfn r)

(tupeq (sel r p)) (λ s. ith))) in

28 Christopher League and Stefan Monnier

let add ≡ λname ty k pf .
apply (method (bbox rep p) name

(plus lt compat r k 1 (size r) pf) (refl equal (Some (snat (plus k (size r)))))
(extension effect k

(λs. ith (arw s frect :: nil))
(λs. refl equal (arw s ty))
(size r) (tupfn r))) in

(repeat constructor;
[inherit center fpoint circ center | inherit radius float circ radius
| inherit area float circ area | add bounds frect 0 (le n 1)]). 2

The inherit and add tacticals are specific to the bbox extension only where they include
the literal 1 (representing the number of methods added by bbox) and refer to the types
of the new methods (arw s frect). This is important because, in practice, a compiler
would produce this proof. It must be automatically derivable from the base and derived
class signatures.

D Representing symbols

We used symbols in CIC throughout this work without properly defining them. Method
labels in the source programming language could be mapped to natural numbers, but
here we show how to define them as sequences of characters from some alphabet.

Inductive char : SET ≡
A | B | C | D | E | F | G.

Definition sym : SET ≡ list char.

To encode the LITL semantics, the only operation we need on symbols is equivalence:

Definition ifeqc ≡ λx y : char. λk : SET. λ t f : k.
match x, y with
| A, A⇒ t | B, B⇒ t | C, C⇒ t | D, D⇒ t
| E, E⇒ t | F, F⇒ t | G, G⇒ t | , ⇒ f
end.

Fixpoint ifeq (x y : sym) (k : SET) (t f : k) {struct x} : k ≡
match x, y with nil, nil⇒ t
| c :: cs, d :: ds⇒ ifeqc c d (ifeq cs ds t f) f
| , ⇒ f
end.

Here are some (abbreviated) method names used in examples.

Definition center ≡ C :: E :: nil.
Definition radius ≡ A :: D :: nil.
Definition area ≡ A :: E :: nil.
Definition bounds ≡ B :: D :: nil.

Typed Compilation Against Non-Manifest Base Classes 29

E Encoding terms in Coq

Throughout the paper, the type language of LITL is expressed in Coq notation and
automatically checked for validity. The term language of LITL, so far, does not benefit
from this approach. To demonstrate that the LITL terms shown here are indeed type-
correct, we can encode their static semantics within Coq. Here as an inductive definition
of type-indexed terms:

Inductive Exp : Ty→ SET ≡
| enat : Πn.Exp (snat n)
| eadd : Πn m.Exp (snat n)→ Exp (snat m)→ Exp (snat (plus n m))
| eabs′ : Π(R : Ty→ SET) (t v : Ty).(R t→ Exp v)→ Exp (arw t v)
| etabs : Π(k : SET) (s : k→ Ty).(Π j : k.Exp (s j))→ Exp (all s)
| eapp : Πs t : Ty.Exp (arw s t)→ Exp s→ Exp t
| etapp : Π(k : SET) (s : k→ Ty).Exp (all s)→Π t : k.Exp (s t)
| ecast : Πs t : Ty.eq s t→ Exp s→ Exp t
| epack : Π(s0 : SET) (t1 : s0→ Ty) (t0 : s0).Exp (t1 t0)→ Exp (ex t1)
| eopen′ : ΠR : Ty→ SET.Πs0 : SET.Π t1 : s0→ Ty.Π t2 : Ty.Exp (ex t1)→

(Πa : s0.R (t1 a)→ Exp t2)→ Exp t2
| efold : Π(s : Ty→ Ty).Exp (s (mu s))→ Exp (mu s)
| eunfd : Π(s : Ty→ Ty).Exp (mu s)→ Exp (s (mu s))
| etup : Π(n : nat) (ts : list Ty).Es n ts→ Exp (tup n (ith ts))

(* The constructor above is more restrictive than the typing rules, *)
(* but it ensures we stick to a decidable subset. *)

| esel : Π(j n : nat) (f : nat→ Ty).Exp (tup n f)→ Exp (snat j)→ lt j n→ Exp (f j)
| eupd : Π(j n : nat) (f : nat→ Ty).Exp (tup n f)→ Exp (snat j)→ Exp (f j)→

lt j n→ Exp (tup n f)
| eext : Π(n n′ : nat) (f f ′ : nat→ Ty).Exp (tup n f)→ Exp (tup n′ f ′)→

Exp (tup (plus n′ n) (append n f f ′))
| edict : Πm : map.Ds m→ Exp (dict (lookup m))
| elook : Π(g : sym→ option Ty).Exp (dict g)→

Π(s : sym) (t : Ty).eq (g s) (Some t)→ Exp t
| efix′ : Π(R : Ty→ SET) (t v : Ty).(R (arw t t)→ R t→ Exp v)→ Exp (arw t v)
| ecmp : Πn m.Exp (snat n)→ Exp (snat m)→

Exp (snat (if (beq nat n m) then 1 else 0))

with Es : nat→ list Ty→ SET ≡ enil : Es O nil
| econs : Π(t : Ty) (n : nat) (ts : list Ty).Exp t→ Es n ts→ Es (S n) (t :: ts)

with Ds : map→ SET ≡ dnil : Ds nil
| dcons : Π(s : sym) (t : Ty) (m : map).Exp t→ Ds m→ Ds ((s, t) :: m).

The following are for notational convenience:

Definition eabs ≡ eabs′ Exp.
Definition efix ≡ efix′ Exp.
Implicit Arguments eabs [v].

30 Christopher League and Stefan Monnier

Definition eopen ≡ eopen′ Exp.
Definition elet ≡ λs t : Ty. λe : Exp s. λbody : Exp s→ Exp t. eapp (eabs s body) e.
Definition dcons′ ≡ λ t m (x : sym × Exp t) (xs : Ds m).

dcons (t ≡ t) (m≡ m) (fst x) (snd x) xs.

Notation "′λ′ x : t. e" ≡ (eabs t (λx. e)) (at level 200, x ident).
Notation "′Open′ x y = e1 ′in′ e2" ≡ (eopen e1 (λx y. e2))

(at level 200, x ident, y ident).
Notation "′Let′ x = e1 ′in′ e2" ≡ (elet e1 (λx. e2)) (at level 200, x ident).
Notation "′Λ′ x : t. e" ≡ (etabs (λx : t.) (λx. e)) (at level 200, x ident).
Notation "′〈′ x , .. , y ′〉′" ≡ (etup (econs x .. (econs y enil) ..)).
Notation "x ′ 7→′ y" ≡ (x, y) (at level 100).
Notation "{ x , .. , y }" ≡ (edict (dcons′ x .. (dcons′ y dnil) ..)).
Notation "� w , e | t � " ≡ (epack t w e) (at level 200).
Notation "e1 @ e2 [t]" ≡ (esel e1 e2 t) (at level 99).
Notation "e # l [t]" ≡ (elook e l t) (at level 99).

Now we are ready to express the running examples within Coq. Here is the encoding
of the function that invokes the radius method on a circle, from figure 5:

Definition invoke radius : Exp (arw (objty circ signature) float) ≡
λ x : objty circ signature.

Open r x1 = x in

Open p x2 = x1 in

Let x3 = eunfd x2 in

Let dc = x3 @ enat 0 [lt02] in
Let vt = esel x3 (enat 1) lt12 in

match p with (,pr,)⇒
Let j = elook dc radius (dicteq pr) in

Let fp′ = esel vt j (proof pr) in

Let fp = ecast (tupeq pr (selfty r)) fp′ in
eapp fp x2

end.

And the function to create a new circle, from figure 6:

Definition lt03 : lt 0 3 ≡ le S (le S (le n 1)).
Definition lt13 : lt 1 3 ≡ le S (le n 2).
Definition lt23 : lt 2 3 ≡ le n 3.
Definition new circ : Exp (arw (classty circ signature) (objty circ signature)) ≡

λ c0 : classty circ signature.
Open r c1 = c0 in

Open p c2 = c1 in

Let dc = esel c2 (enat 1) lt13 in

Let ms = esel c2 (enat 2) lt23 in

Let vt = etapp (etapp ms r) p in

Typed Compilation Against Non-Manifest Base Classes 31

Let x = 〈dc, vt〉 in
epack (objty′ circ signature) r
(epack (objty′′ circ signature r) p
(efold (objrep r) x)).

Here is the ‘B’ circle class, to demonstrate that the classty is habitable (figure 7).

Parameter method body : Π t : Ty.Exp t.
Definition circB : Exp (classty circ signature) ≡

Let dc = {radius 7→ enat 4, area 7→ enat 1,
center 7→ enat 2} in

Let ms = Λ r : Rep. Λ p : circ signature r.
〈λ s : selfty r. method body (ex snat),
λ s : selfty r. method body float,
λ s : selfty r. method body fpoint,
enat 0,
λ s : selfty r. method body float〉 in

epack (classty′ circ signature) circB rep
(epack (classty′′ circ signature circB rep) circB witness
〈enat 5, dc, ms〉).

Definition create and invoke : Exp float ≡
eapp invoke radius (eapp new circ circB).

The following corresponds to figure 8.

Parameter area formula : Exp (arw float float).
Definition circle bbox :
Exp (arw (classty circ signature) (classty bbox signature)) ≡

λ c0 : classty circ signature.
Open r0 c0 = c0 in

Open p0 c0 = c0 in

Let sz0 = esel c0 (enat 0) lt03 in

Let dc0 = esel c0 (enat 1) lt13 in

Let ms0 = esel c0 (enat 2) lt23 in

Let ci = elook dc0 center (dicteq (circ center p0)) in

Let ri = elook dc0 radius (dicteq (circ radius p0)) in

Let ai = elook dc0 area (dicteq (circ area p0)) in

Let dc1 = {center 7→ ci, radius 7→ ri, area 7→ ai, bounds 7→ sz0} in

let r1 ≡ bbox rep p0 in

Let ms1 = Λ r2 : Rep. Λ p2 : bbox signature r2.
Let vt0 = etapp (etapp ms0 r2) (bbox2circ p2) in

Let ar = esel vt0 ai (proof (circ area p0)) in

Let ar = ecast (tupeq (circ area p0) (selfty r2)) ar in

Let ar′ = λ s : selfty r2. eapp area formula (eapp ar s) in

Let ar′ = ecast (sym eq (tupeq (circ area p0) (selfty r2))) ar′ in
Let bo = λ s : selfty r2. method body frect in
Let vt1 = eupd vt0 ai ar′ (proof (circ area p0)) in

32 Christopher League and Stefan Monnier

eext vt1 〈bo〉 in
epack (classty′ bbox signature) r1
(epack (classty′′ bbox signature r1) (bbox witness p0)
〈eadd (enat 1) sz0, dc1, ms1〉).

The upcast in figure 9:

Definition bbox upcast :
Exp (arw (objty bbox signature) (objty circ signature)) ≡

λ x : objty bbox signature.
Open r x = x in

Open p x = x in

epack (objty′ circ signature) r
(epack (objty′′ circ signature r) (bbox2circ p) x).

All of these examples were extracted from the paper and successfully validated by Coq.

