On the Construction of
Convergent Transfer Subgraphs
in General Labeled Directed Graphs

Mohammed Ghriga Christopher League

Long Island University - Computer Science
1 University Plaza, LLC 206, Brooklyn, NY 11201

mohammed.ghriga@liu.edu christopher.league@liu.edu

Abstract

Let L and L’ be finite input and output alphabet sets, respectively. In a
graph whose edges are labeled with input/output symbols, the transfer de-
cision problem [3] is to determine whether there are sequences over L x L
that guarantee transfer from a known vertex v to a destination vertex w. Con-
vergent transfer subgraphs (CTS) are graphical representations of such se-
quences. Thisis an abstraction of the transfer of a communication protocol
to a specific state for testing purposes.

Li et a. [6] presented apolynomial time algorithm to solve the CTS prob-
lem for labeled directed acyclic graphs. This was reduced to a linear-time
agorithm by Li [5]. However, there are no efficient algorithms for general
directed graphs. In this paper, we present an algebraic framework for the
incremental construction of convergent transfer subgraphs. We shall prove
composition theorems that form the basis for the practical construction of
convergent transfer subgraphs over general directed graphs.

1 Motivation

Conformancetesting is about determining whether (or to what extent) a particular
implementation under test conformsto its formal specification. Generally it refers
to black box testing, which does not involve analysis of the source code. Rather,
we areto determinethe level of conformance merely by providing some stimuli to
the implementation and observing its responses. The techniqueis often applied to
communication protocols, though thisis not essential. In communicating systems,
typicaly aformal specification governsavariety of distinct implementations, and
concurrency and non-determinism make verification extremely challenging. The
technique, however, can be applied to any system whose behavior can be repre-
sented as segquences of inputs and outputs.

The core of any kind of testing procedure is test-case selection. Our goal is
to enumerate a set of cases that sufficiently exercise the various behaviors of the
system so that the likelihood of faults during production use is reduced. For non-
deterministic systems, astatic set of test casesis necessarily insufficient, so testing
must be adaptive [1, 4, 7, 9]. This means that the tester can change its test plan
based on observed responses from the implementation under test.

There are many languages and frameworks available for specifying the behav-
ior of concurrent systems. For our purposes, it is sufficient to treat a specification
as a hon-deterministic finite state machine. Thisis a directed graph where nodes
represent system states and each edge is labeled with an input/output pair. If the
system is provided with the specified input, we can expect the specified output,
and the system will transition to the new state. There are several sources of non-
determinism: from a given state and for a given input, there could be multiple
edges with same or different outputs, and the same or different destination states.
After just afew non-deterministic transitions, it can become extremely difficult to
know for certain which state(s) we areiin.

Kloosterman [4] identifies three useful kinds of traces to be found in non-
deterministic specifications: a synchronizing sequence takes the machine from
any state back to a start state. It can function essentially as a reset button that the
tester can use to guarantee transfer back to a known state. A transfer sequence
moves from one given state to another (such as from the start state to the source
of the next transition to test). Finally, a unique input/output sequence [8] serves
asasignatureto distinguish a given set of states, and thus validate the outcome of
atransition under test.

In deterministic automata, these can al be represented by sequences of in-
put symbols, but in the non-deterministic case, they are trees or directed acyclic
graphs. A convergent transfer subgraph (CTS) is a subgraph of the specifica-
tion that represents a transfer sequence, moving control from one given state to
another. We define it formally in the next section.

Discovering and building convergent transfer subgraphsin a complex specifi-
cation can be extremely difficult. Ghriga and Kabore [3] presented an algorithm
that was polynomial, but only if the specification is sparsely non-deterministic
(roughly, alogarithmic amount of non-determinism), and becomes exponential as
the number of non-deterministic edges approaches n, the number of nodes. They
collaborated with Li [6] to develop an O(n?) algorithm. Later, this was improved
to alinear algorithm by Li [5]. However, al of these results are for acyclic spec-
ification graphs. For example, the linear algorithm begins with atopological sort,
which failsif there are cycles. Iterative behavior is, of course, important in many
protocols, and so handling cyclesin protocol specificationsis critical.

Our contribution in this paper is an algebraic framework for the incremental
construction and manipulation of convergent transfer subgraphs within general
directed graphs. Specifically, we define two operators on graphs and show that the
set of convergent transfer subgraphsis closed over these operations. This enables

away to reason about CTS composition, both sequentially and in parallel.

In the next section, we formalize our graph notation and define formally the
different kinds of subgraphs and the operators we propose. Section 3 states and
proves a number of useful properties about our operators and observations about
the subgraphs. Finally, we discuss some consequences and future directions in
section 4.

2 Formalization

Our directed graphs are defined by a set of verticesV and a set of edgesE C V x
Lin X Lout X V. The sets L, and Loyt are input and output al phabets, respectively;
apar from Lin x Loyt comprises an edge label. The notation V(H) fetches the
vertex set of agraph H, and E(H) designatesthe edge set. We let G, H range over
graphs; v,w, x, Yy, z (and variants) range over vertices, e over edges; and a, b, c over
input/output symbols.

We use the notation a/b for alabel in Lin x Loy, and the notation (x,a/b,y)
for an edgein E. Superscripts are used to refer to the components of an edge:

istheinitial vertex of edgee X inthe example
et istheterminal (destination) vertex y

€ istheinput symbol on edgee a
e® istheoutput symbol on edge e b

Using these, we define afew important sets and notations relating to graph edges:

e outy(v) = {€ | ec E(H) Ae” = v} isthe set of all input symbols on out-
going edges of v.

e Ey(v,a)={ecE(H) | e =vA€ =al isthe set of al outgoing edges of
v that have input symbol a.

e d(v,a) = |[Ex(v,a)| isthe out-degree of avertex v with respect to the input
symbol a.

In all cases, the subscript designating the graph of interest may be omitted if it is
clear from the context.

The subgraph relation is defined entirely by the subset relation on vertex and
edge sets. That is, G is a subgraph of H, written G C H, if and only if V(G) C
V(H) and E(G) C E(H). Any subset of verticesV' induces a subgraph H|V'] by
including all edges{e€ E(H) | e~ € V' Aet €V} incident on verticesinV'.

A path is a (possibly empty) sequence of connected edges. That is, for any
adjacent pairseye; inapath, €] =€, . A pathey,e,...eisapathfromxtoyin
H, denoted P (x,y), if eache € E(H) ande; =xand g =Y. Ry (v) isthe set of
vertices reachable fromyv; that is, Ry (V) = {V € V(H) | IP4 (v, V)}.

With these notations in place, we are now prepared to define formally one of
the central concepts of this work: the transfer subgraph. The definition is exactly

b/b
b/a

b/c C c/d @ C c/d @

Figure 1: A graph G (left) and a convergent transfer subgraph CTS(v1,vs) in G.

a/c

theoneused in[2, 3, 6]; in later work, Li [5] introduced an aternative definition
based on edge-coloring instead of input/output al phabets.

Definition 1 (transfer subgraph) Let G be a labeled directed graph and v,v’ €
V(G). A subgraph G’ of G is said to be a transfer subgraph from vertex v to v/,
written TSG(v, V'), if the following properties hold:

1 vV eVv(G)

2. W eV(GQ),vi e Rg (V) AV € Rz (Vi)

3. W e V(G),|oute (Vi)| < 1A (Joute (Vi) =0 vi = V)

4. W eV(G'),Yae Lin,ac outg (Vi) — dg (vi,a) = dg (vi,a)

A more narrative explanation may be helpful. The first condition requiresthat the
source vertex v and the destination (sink) vertex v’ are vertices of the subgraph.
The second property states that any vertex v; in the TSG is reachable from v, and
in turn, the destination v’ is reachable from v;. The third property expresses the
requirement that all outgoing edges at any vertex (with the sole exception of the
sink, V') share the sameinput symbol. The sink isthe only vertex with no outgoing
edges. The fourth property ensuresthat all non-deterministic choicesin the parent
graph G are preserved in the subgraph.

Definition 2 (convergent transfer) A convergent transfer subgraph CTS(v,v') is
atransfer subgraph that is acyclic.

The convergent transfer subgraph is equivalent to a transfer sequence in protocol
conformance testing [2], to effect a transfer from one state (represented by the
source vertex) to another state (the sink). An example of a general graph and a
particular CTS can befoundin figure 1.

We identify one more general kind of graph, useful for reasoning about prop-
erties of the transfer subgraphs:

Definition 3 (zero-one) A graph H is said to be a 0-1 graph (or subgraph) if
louty (V)| € {0,1} for everyve V(H).

That is, all outgoing edges at any vertex share the sameinput symbol. A 0-1 graph
drops al but one requirement of the transfer subgraph, so we have the hierarchy
CTSC TSG C 0-1.

The remaining definitions in this section are about the operators we propose
for constructing transfer subgraphs. We begin with the observation that any 0-1
subgraph can be characterized by a simple function over its vertices.

Definition 4 (characterization) We can represent a 0-1 subgraph H C G by a
characteristic function py : V(G) — (Lin U {0, L}), defined as follows:

0 ifveV(H)Aouty(v)=0
a ifveV(H)Aouty(v) ={a}
{ 1 ifvgV(H)

Obviously, the symbols 0 and _L are chosen to be distinct from any input symbol.
bH (V) = O indicates that v has no outgoing edges in the 0-1 subgraph H (it says
nothing about the edges in the general parent graph G). pn(v) =L indicates that
the vertex v is not part of the 0-1 subgraph. Otherwise, pun (v) maps the vertex to
the unique input symbol on its outgoing edges.

Just as any 0-1 subgraph can be characterized by a function, conversely one
can construct the 0-1 subgraph H from the original graph G and the function.
Therefore, 0-1 subgraphs (including transfer subgraphs) can be interchangeably
referred to by their characteristic functions.

HH (V) =

Definition 5 (projection) Let G be a graph, and v e V(G). The operation G|V
denotes the subgraph induced by all the verticesin G reachable fromv. Formally,
GV = G[Rs(V)].

Projection is a simple operation, and it is easy to show that the universe of 0-1
subgraphs of a given graph G is closed under it. We state this property here, but
more complex propertieswill be addressed in the next section.

Lemma 1 (closed under projection) For a given graph G, if G’ C Gisa 0-1
subgraph, then G’|v] is also a 0-1 subgraph for any v e V(G'). The same closure
property holds for TSG and CTStoo.

Proof isimmediate from definitions 1, 2, and 5. O

The composition of 0-1 subgraphsis best described by reasoning in terms of
their characteristic functions. First we define an operator over the range of these
functions: the input a phabet L, with the additional symbolsOand L.

Definition 6 (composition) The binary operator & is a left-associative composi-
tion over the elementsin LipU{0, L}. Leta,be LihU{0, L}. The operator & is
defined as follows:

a0 = 0
apl = a
adb = b wherebeli

© ©

alc a/b a/b a/c

@ c/b C c/b C @ c/b C
(A) B) ©) (D)

Figure 2: Graph composition example: C=A®BandD =B® A.

Intuitively, the composition operator favors its right operand, unless that operand
is L (undefined); in this case alone, it uses the left operand. In particular, this
means that composition is not commutative: for agivena € Li,, a® 0= 0 but
0@ a= a. Now we overload the composition operator on the graphs themselves.
Figure 2 contains some sample graphs and their compositions.

Definition 7 (subgraph composition) Let G be a graph. Let G1,G2 C G be 0-1
subgraphs. The composition of G1 and G2, denoted G1 & Go, is the subgraph of
G whose characteristic functionis g, s, (V) = Hg, (V) @ Ha, (V) for all ve V(G).

3 Properties

Lemma 2 (characteristic of composition) Let G beagraph,andG1,G, C Gbe
0-1 subgraphs. The characteristic function pg,sc, Of their composition can be
restated as follows:

He, (V) ifveV(Gy)
HG1 3G, ()={ He, (V) ifveV(G1)\V(Gy)
1 ifveV(G1)UV(Gy)

foralve V(G).

Proof. Definition 7 states that U, a6, (V) = He, (V) ® He,(V). ® Forve V(Gy),
Hg, (V) @ g, (V) = Hg,(V) since [g, (V) € Linu{0}. e Forve V(G1)\V(Gz),
HG, (V) @ M, (V) = Ho, (V)& L= pg,(v). e Finaly, when v ¢ V(G1) UV(Gy),
Ha, (V) ® UG, (V) =L & L=1. O

Lemma 3 (subgraph containment) Let G be a graph, and G;,G, C G be 0-1
subgraphs. Then, G, C (G1 ¢ Gz) C (G1UGy).

Proof. Trivialy, V(G1® G;) = V(G1 UGy), so this property is about the edge
sets. It suffices to show that E(G1) C E(G1 & G,) C E(G1UGy). The composed
edge set E(G1 @ Gy) isthe union of the following:

U Ec(V.H,(v)) and U

VeV (G2)Alg, (V) €Lin VeV (G1)\V(G2)Abg, (V)€Lin

Ec(VHe, (V)

Theformer isprecisely equal to E(G3), because G, isa0-1 subgraph. Thelatter is
asubset of theedgesin E(G31). Thus,wehaveE(G1) CE(G19G2) CE(G1UGy)
asrequired. |

Lemma 4 (path containment) Let G be a graph, and G1,G, C G be 0-1 sub-
graphs. If P=¢eP’ isa path in G; & G, and e € E(Gy), then P is completely
containedin Go.

Proof by induction on the length of path P’. e Base case: P’ isthe empty path, so
P =e Sincee € E(Gy), the conclusion holds. e Induction: assume the property
holds for a path of length k. Once again, let P = eP’ in G; ¢ G, wheree € E(Gy),
and length of P" isk+ 1. We can write P as eP”(x,a/b,x’) where P” is a path of
length k from the destination vertex of e to x. Since G1 & Gy is a 0-1 subgraph
of G, Hg,s6,X = a. Using the induction hypothesis, the path eP” is completely
contained in Gy, so x € V(Gy) too. Using lemma 2, g, «6,(X) = Ha,(X). Hence,
He,(X) = aand (x,a/b,X’) € E(G2). Therefore, the path eP”(x,a/b,x’) is com-
pletely contained in Go. |

Lemma 5 (acyclic) Let G be a graph, and G1,G, C G be 0-1 subgraphs. If G1
and G, areacyclic, then sois G; @ Go.

Proof by contradiction. Suppose that G and G, are acyclic, but G; & Gy is not.
Hence, there exists acycle C in G; @ Gy. Since Gy is acyclic, then cycle C must
contain at least one edge from G,. Let e = (x,a/b,x) be such an edge. We can
writeC = eC’ whereC’ isapath fromx’ back to x. Using lemma4, C iscompletely
contained in G,. Hence, G’ contains a cycle, which contradictsthe premise. O

Lemma 6 (compositional closure) Let G be a graph and x,y,z€ V(G). Let G
and G be 0-1 subgraphs of G. If G; = CTS(x,y) and G, = CTS(y, 2) then (G1 @
G2)[X] is a convergent transfer subgraph fromxto zin G.

Proof. We first consider the boundary cases. e If x =z then x is the sink of a
CTS, S0 g, a6, (X) = 0. Specifically, (G1 @ G2)[x] isthe subgraph ({x},), which
isaCTSfromxtoz(=x) inG. e If x=y then G; is the trivial subgraph and
(G1® Gy)[X] = Gz2[X] = G2, whichisaCTSfromx(=y) tozinG.

e Now consider the case X # ZAX # YAy =z Thistime, G isthe trivia
subgraph and G1 UG, = G; because z(=y) isaso in G1. From lemma3, we have
G1® Gy C Gy. Observe that Ug, (V) = Ug,ac, (V) for ve V(Gy). This implies
G1 C G1 @ Gy. Hence, (G1@ Gy)[X] = G1[X] = G1, which is a CTS from x to
z(=y)inG.

Next, consider x, Y,z to be pairwisedistinct. Letv eV ((G1 4 Gy)[X]). To show
that property 2 of definition 1 is satisfied, it suffices to show that there is a path
fromvtozin (G1 @ G2)[X.

e Case 1. suppose Vv € V(Gy). Because G, = CTS(y, z), there exists a path
Ps,(v,z). The same pathisin G1 @ G because G C G1 @ G. Sincev is reach-
ablefrom xin (G1 © Gp)[x], al verticesin Pg,(v,2) are in Rig,ac,)x (X)- Hence,
Pg,(v,2) isin (G1 & G2)[X.

e Case 2: supposeinstead that v € V(G1)\V(Gy). Because G; = CTS(X,y),
thereis a path Pg, (v,y) of length k > 0. We write

PG]_ (V7Y) = (WOa aO/bOaW].) M (Wk*j.? akfl/bkflawk)

wherewp =vandwy =Y. Let S= {wg,wz,...wk_1} NV (Gy) represent the set of
verticesin the path that are also part of G,. There are two sub-cases:

e Case 2a(S=0): Yg,ac, (W) =4 for 0 <i <k, using lemmaz2. It follows
that P, (V,y) isin G1 @ Gg. SinceV € Rg,ac,)x (X), al verticesin Pg, (v,y) arein
R(G,06,)x (X). Hence, the concatenation Pg, (V,Y)P g, e, x (¥: 2) isapath from v
to z. The existence of P, s6,)x (¥, 2) followsimmediately from case 1.

e Case 2b (S# 0): let j bethe smallest index such that w; € S. j # 0 because
wj(= V) ¢ V(Gz) and therefore w; ¢ S. However, j existsintherange 0 < j <
k and the prefix {wi,...wj_1} NS= 0. From cases 1 and 2.1, it follows that
Pa, (V,Wj)Pg,a6,(Wj,2) isapath from v to zin (G1 @ G2)[x], where Pg, (V,w;) is
the path which consists of thefirst j edges of Pg, (v,y).

Also, it is clear now that z € V ((G1 @ G2)[X]). For property 3 of definition 1,
it suffices to observe that (G1 & G2)[X] is a 0-1 subgraph of G and z is the only
vertex with no outgoing edges. Moreover, property 4 of definition 1 is readily
satisfied from our use of characteristic functions. From lemma5 and definition 5,
(G1® Gy)[x] isacyclic. Thus, itisaCTSfromxto z. O

We are now ready to establish the composition theorems. Let G1,Gy,...Gp
be a sequence of 0-1 subgraphs of a given graph G and x € V(G). For n > 1 we
define f,, asafunction of n+ 1 variables, as follows:

fl(Gl,X) = Gl[X]
fk(Gl,Gz...Gn,X) = (fnfl(Gl,Gz...anl,X)@Gn)[X} ifn>2

Theorem 1 (sequential construction) Let G be a graph and G1,G»,...Gk bea
sequence of 0-1 subgraphs of G. Let X1,X2,...X+1 € V(G). If Gi = CTS(Xi, Xi+1)
for eachi intherange 1...k, then fy(G1,Gy,... Gk, x1) is a convergent transfer
subgraph from x; to X1 in G.

Proof by induction on k, using lemma 6 (compositional closure). m|

The previous theorem shows that CTSs can be sequentially combined, to achieve
transitivity. The following result indicates the way to combine CTSs to maintain
parallel transfer to the same destination.

Theorem 2 (parallel construction) Let G beagraphand G1,Gy,...G bea se-
quence of 0-1 subgraphsin G. Let x1,%p,... %, Y € V(G). If G; = CTS(x;,) (for

eachi € {1...k}),then (G1® G2 ®...® Gy)[xj] isaCTSfromx; toyin G, for all
je{l...k}.

Proof by induction on k. It holds trivially for k = 1; we assume it holds for k
and demonstrate k + 1. Given the left-associativity of @, we write @ K1G; =
(G1@...®Gx) ®Gyy1 = (8K ,Gi) ® Gy 1. By lemma3 (subgraph containment),
definition 5 (projection), and the premise, we havethat (K ;Gi) @ Giy1) [Xki1] =
Gky1isaCTSfromxy, 1 toy.

Let j € {1...k}. We must show that ((®X ,Gi) ® Gky1)[x;j] is a CTS from
Xj toy. The proof is similar to that of lemma 6. e The result is immediate if
Xj = Xicr1. © If Xj =y then (@FjllGi)[xj] = ({y},0) whichis atrivial CTS from
Xj(=y)toy.

o If X1 =Yy then Gyi1 = ({y},0) is the trivial CTS from xx;1(=y) toy.
We can invoke the induction hypothesis by showing that @K' 1G; = ¢k | G;. To
simplify notation, let A= &K ;G and B = ! 1G; = A® Gy, 1. Itissufficient to
show that pa(v) = ps(v) for al v € V(G). Using lemma 2, there are three sub-
cases. o If ve V(G 1) it meansthat v=y, and pg(v) = Hg,,, (V) = 0. But, by
theinduction hypothesis, Aisa CTS with sink y, which means pa(v) = 0too. e If
VeV (A)\V(Gks1) then pg(v) = pa(v) by lemma2. e If v V(A)UV (Gyy1) then
pg(v) =L. By definition 4, pa(v) =L too sincev & V(A).

Now we may focus on the case where Xj, X1, and y are pairwise distinct.
We continue to use the abbreviations A and B. Let v e V(B[X|]). e Case 1:
if veV(Gk,1) then there exists a path Pg,,, (v,y) which is also contained in B
(by lemma 3) and B[x|] (because v is reachable from x;j). Otherwise, v e V(A)
and there exists a path P = Pax] (v,y). e Case2a if none of the paths of Gg;1
intersects P at avertex other thany, then P is containedin B and B[xj|. e Case 2b:
otherwise, let w be the closest intersecting vertex to v. Use the reasoning of cases
2.1 and 1 to construct a path from v to w and a path from w to y, respectively. This
shows that B|x;| satisfies property 2 of definition 1. Asin the proof of lemma 6,
B[x;] satisfies the other properties of transfer subgraphs, and is acyclic. Hence, it
isaCTSfromx; toy. 0

4 Conclusion

The construction of transfer sequences from non-deterministic specificationsis an
important problem for protocol conformancetesting. We have defined two opera-
tors (composition and projection) and proved formally that they may be employed
in the incremental construction of convergent transfer subgraphs within general
directed graphs.

We bedlieve thisis the first fully general result to address CTS construction.
Previous results took advantage of certain properties of the graph — the absence
of cycles[3, 6, 5], or sparse non-determinism [3] — and thus have limited applica-
bility. In future work, we expect this framework to be instrumental in the design

of new space- and time-efficient algorithms for CTS construction, applied to real
specifications.

References

[1] M. Ghrigaand P. G. Frankl. Adaptive testing of non-deterministic communi-
cation protocols. In Protocol Test Systems VI, pages 347-362. Elsevier/North-
Holland, 1994.

[2] M. Ghrigaand P. Kabore. Un a gorithme nondéterministe pour la génération
de sous-graphes de transfer convergents. In Actes du Collogue Francophone
sur I’ Ingénierie des Protocoles. Hermes, 1999.

[3] M. Ghrigaand P. Kabore. On the existence of convergent transfer subgraphs
in labeled directed acyclic graphs. Congressus Numerantium, 136:207-214,
1999.

[4] H. Kloosterman. Test derivation from non-deterministic finite state machines.
In Protocol Test Systems V, pages 297-308. Elsevier/North-Holland, 1993.

[5] W.-N. Li. Convergent transfer subgraph characterization and computation. In
Proc. Int’'| Symp. on Circuits and Systems, volume 3, pages 248-251. |EEE,
May 2003.

[6] W.-N. Li, M. Ghriga, and P. Kabore. A polynomial time agorithm for de-
ciding convergent transfer subgraphsin labeled directed acyclic graphs. Con-
gressus Numerantium, 144:97-111, 2000.

[7] A. Petrenko, N. Yevtushenko, A. Lebedev, and A. Das. Non-deterministic
state machines in protocol conformancetesting. In Protocol Test Systems VI,
pages 363-378. Elsavier/North-Holland, 1994.

[8] K. Sabnani and A. Dahbura. A protocol test generation procedure. Computer
Networks and ISDN Systems, 15(4):285-297, 1988.

[9] P Tripathy and K. Naik. Generation of adaptive test cases from non-
deterministic finite state models. In Protocol Test Systems V, pages 309-320.
Elsevier/North-Holland, 1993.

