
On the Construction of
Convergent Transfer Subgraphs

in General Labeled Directed Graphs

Mohammed Ghriga Christopher League

Long Island University · Computer Science
1 University Plaza, LLC 206, Brooklyn, NY 11201

mohammed.ghriga@liu.edu christopher.league@liu.edu

Abstract

Let L and L′ be finite input and output alphabet sets, respectively. In a
graph whose edges are labeled with input/output symbols, the transfer de-
cision problem [3] is to determine whether there are sequences over L×L′
that guarantee transfer from a known vertex v to a destination vertex w. Con-
vergent transfer subgraphs (CTS) are graphical representations of such se-
quences. This is an abstraction of the transfer of a communication protocol
to a specific state for testing purposes.

Li et al. [6] presented a polynomial time algorithm to solve the CTS prob-
lem for labeled directed acyclic graphs. This was reduced to a linear-time
algorithm by Li [5]. However, there are no efficient algorithms for general
directed graphs. In this paper, we present an algebraic framework for the
incremental construction of convergent transfer subgraphs. We shall prove
composition theorems that form the basis for the practical construction of
convergent transfer subgraphs over general directed graphs.

1 Motivation

Conformance testing is about determining whether (or to what extent) a particular
implementation under test conforms to its formal specification. Generally it refers
to black box testing, which does not involve analysis of the source code. Rather,
we are to determine the level of conformance merely by providing some stimuli to
the implementation and observing its responses. The technique is often applied to
communication protocols, though this is not essential. In communicating systems,
typically a formal specification governs a variety of distinct implementations, and
concurrency and non-determinism make verification extremely challenging. The
technique, however, can be applied to any system whose behavior can be repre-
sented as sequences of inputs and outputs.

The core of any kind of testing procedure is test-case selection. Our goal is
to enumerate a set of cases that sufficiently exercise the various behaviors of the
system so that the likelihood of faults during production use is reduced. For non-
deterministic systems, a static set of test cases is necessarily insufficient, so testing
must be adaptive [1, 4, 7, 9]. This means that the tester can change its test plan
based on observed responses from the implementation under test.

There are many languages and frameworks available for specifying the behav-
ior of concurrent systems. For our purposes, it is sufficient to treat a specification
as a non-deterministic finite state machine. This is a directed graph where nodes
represent system states and each edge is labeled with an input/output pair. If the
system is provided with the specified input, we can expect the specified output,
and the system will transition to the new state. There are several sources of non-
determinism: from a given state and for a given input, there could be multiple
edges with same or different outputs, and the same or different destination states.
After just a few non-deterministic transitions, it can become extremely difficult to
know for certain which state(s) we are in.

Kloosterman [4] identifies three useful kinds of traces to be found in non-
deterministic specifications: a synchronizing sequence takes the machine from
any state back to a start state. It can function essentially as a reset button that the
tester can use to guarantee transfer back to a known state. A transfer sequence
moves from one given state to another (such as from the start state to the source
of the next transition to test). Finally, a unique input/output sequence [8] serves
as a signature to distinguish a given set of states, and thus validate the outcome of
a transition under test.

In deterministic automata, these can all be represented by sequences of in-
put symbols, but in the non-deterministic case, they are trees or directed acyclic
graphs. A convergent transfer subgraph (CTS) is a subgraph of the specifica-
tion that represents a transfer sequence, moving control from one given state to
another. We define it formally in the next section.

Discovering and building convergent transfer subgraphs in a complex specifi-
cation can be extremely difficult. Ghriga and Kabore [3] presented an algorithm
that was polynomial, but only if the specification is sparsely non-deterministic
(roughly, a logarithmic amount of non-determinism), and becomes exponential as
the number of non-deterministic edges approaches n, the number of nodes. They
collaborated with Li [6] to develop an O(n2) algorithm. Later, this was improved
to a linear algorithm by Li [5]. However, all of these results are for acyclic spec-
ification graphs. For example, the linear algorithm begins with a topological sort,
which fails if there are cycles. Iterative behavior is, of course, important in many
protocols, and so handling cycles in protocol specifications is critical.

Our contribution in this paper is an algebraic framework for the incremental
construction and manipulation of convergent transfer subgraphs within general
directed graphs. Specifically, we define two operators on graphs and show that the
set of convergent transfer subgraphs is closed over these operations. This enables

a way to reason about CTS composition, both sequentially and in parallel.
In the next section, we formalize our graph notation and define formally the

different kinds of subgraphs and the operators we propose. Section 3 states and
proves a number of useful properties about our operators and observations about
the subgraphs. Finally, we discuss some consequences and future directions in
section 4.

2 Formalization

Our directed graphs are defined by a set of vertices V and a set of edges E ⊆ V ×
Lin ×Lout ×V . The sets Lin and Lout are input and output alphabets, respectively;
a pair from Lin × Lout comprises an edge label. The notation V (H) fetches the
vertex set of a graph H, and E(H) designates the edge set. We let G,H range over
graphs; v,w,x,y,z (and variants) range over vertices; e over edges; and a,b,c over
input/output symbols.

We use the notation a/b for a label in Lin ×Lout, and the notation (x,a/b,y)
for an edge in E. Superscripts are used to refer to the components of an edge:

e− is the initial vertex of edge e x in the example
e+ is the terminal (destination) vertex y
eI is the input symbol on edge e a
eO is the output symbol on edge e b

Using these, we define a few important sets and notations relating to graph edges:

• outH(v) = {eI | e ∈ E(H)∧ e− = v} is the set of all input symbols on out-
going edges of v.

• EH(v,a) = {e ∈ E(H) | e− = v∧ eI = a} is the set of all outgoing edges of
v that have input symbol a.

• d−
H (v,a) = |EH(v,a)| is the out-degree of a vertex v with respect to the input

symbol a.

In all cases, the subscript designating the graph of interest may be omitted if it is
clear from the context.

The subgraph relation is defined entirely by the subset relation on vertex and
edge sets. That is, G is a subgraph of H, written G ⊆ H, if and only if V (G) ⊆
V (H) and E(G) ⊆ E(H). Any subset of vertices V ′ induces a subgraph H[V ′] by
including all edges {e ∈ E(H) | e− ∈V ′ ∧ e+ ∈V ′} incident on vertices in V ′.

A path is a (possibly empty) sequence of connected edges. That is, for any
adjacent pairs e1e2 in a path, e+

1 = e−2 . A path e1,e2, . . .en is a path from x to y in
H, denoted PH(x,y), if each ei ∈ E(H) and e−1 = x and e+

n = y. RH(v) is the set of
vertices reachable from v; that is, RH(v) = {v′ ∈V (H) | ∃PH(v,v′)}.

With these notations in place, we are now prepared to define formally one of
the central concepts of this work: the transfer subgraph. The definition is exactly

0 1

3 4 5
c/d

b/a
b/b

b/c
a/c

b/c

a/b
1

4 5
c/d

b/a
b/b

Figure 1: A graph G (left) and a convergent transfer subgraph CTS(v 1,v5) in G.

the one used in [2, 3, 6]; in later work, Li [5] introduced an alternative definition
based on edge-coloring instead of input/output alphabets.

Definition 1 (transfer subgraph) Let G be a labeled directed graph and v,v ′ ∈
V (G). A subgraph G′ of G is said to be a transfer subgraph from vertex v to v ′,
written TSG(v,v′), if the following properties hold:

1. v,v′ ∈V (G′)

2. ∀vi ∈V (G′),vi ∈ RG′(v)∧ v′ ∈ RG′(vi)

3. ∀vi ∈V (G′), |outG′(vi)| ≤ 1∧ (|outG′(vi)| = 0 ↔ vi = v′)

4. ∀vi ∈V (G′),∀a ∈ Lin,a ∈ outG′(vi) → d−
G′(vi,a) = d−

G (vi,a)

A more narrative explanation may be helpful. The first condition requires that the
source vertex v and the destination (sink) vertex v ′ are vertices of the subgraph.
The second property states that any vertex vi in the TSG is reachable from v, and
in turn, the destination v′ is reachable from vi. The third property expresses the
requirement that all outgoing edges at any vertex (with the sole exception of the
sink, v′) share the same input symbol. The sink is the only vertex with no outgoing
edges. The fourth property ensures that all non-deterministic choices in the parent
graph G are preserved in the subgraph.

Definition 2 (convergent transfer) A convergent transfer subgraph CTS(v,v ′) is
a transfer subgraph that is acyclic.

The convergent transfer subgraph is equivalent to a transfer sequence in protocol
conformance testing [2], to effect a transfer from one state (represented by the
source vertex) to another state (the sink). An example of a general graph and a
particular CTS can be found in figure 1.

We identify one more general kind of graph, useful for reasoning about prop-
erties of the transfer subgraphs:

Definition 3 (zero-one) A graph H is said to be a 0-1 graph (or subgraph) if
|outH(v)| ∈ {0,1} for every v ∈V (H).

That is, all outgoing edges at any vertex share the same input symbol. A 0-1 graph
drops all but one requirement of the transfer subgraph, so we have the hierarchy
CTS ⊆ TSG ⊆ 0-1.

The remaining definitions in this section are about the operators we propose
for constructing transfer subgraphs. We begin with the observation that any 0-1
subgraph can be characterized by a simple function over its vertices.

Definition 4 (characterization) We can represent a 0-1 subgraph H ⊆ G by a
characteristic function µH : V (G) → (Lin ∪{0,⊥}), defined as follows:

µH(v) =

0 if v ∈V (H)∧outH(v) = /0
a if v ∈V (H)∧outH(v) = {a}
⊥ if v �∈V (H)

Obviously, the symbols 0 and ⊥ are chosen to be distinct from any input symbol.
µH(v) = 0 indicates that v has no outgoing edges in the 0-1 subgraph H (it says
nothing about the edges in the general parent graph G). µH(v) =⊥ indicates that
the vertex v is not part of the 0-1 subgraph. Otherwise, µH(v) maps the vertex to
the unique input symbol on its outgoing edges.

Just as any 0-1 subgraph can be characterized by a function, conversely one
can construct the 0-1 subgraph H from the original graph G and the function.
Therefore, 0-1 subgraphs (including transfer subgraphs) can be interchangeably
referred to by their characteristic functions.

Definition 5 (projection) Let G be a graph, and v ∈ V (G). The operation G[v]
denotes the subgraph induced by all the vertices in G reachable from v. Formally,
G[v] = G[RG(v)].

Projection is a simple operation, and it is easy to show that the universe of 0-1
subgraphs of a given graph G is closed under it. We state this property here, but
more complex properties will be addressed in the next section.

Lemma 1 (closed under projection) For a given graph G, if G ′ ⊆ G is a 0-1
subgraph, then G′[v] is also a 0-1 subgraph for any v ∈V (G ′). The same closure
property holds for TSG and CTS too.

Proof is immediate from definitions 1, 2, and 5. �

The composition of 0-1 subgraphs is best described by reasoning in terms of
their characteristic functions. First we define an operator over the range of these
functions: the input alphabet Lin with the additional symbols 0 and ⊥.

Definition 6 (composition) The binary operator ⊕ is a left-associative composi-
tion over the elements in Lin ∪{0,⊥}. Let a,b ∈ Lin ∪{0,⊥}. The operator ⊕ is
defined as follows:

a⊕0 = 0

a⊕⊥ = a

a⊕b = b where b ∈ Lin

0

1 2
c/b

a/b

0

1

a/c

0

1 2
c/b

a/b

0

1 2
c/b

a/c

(A) (B) (C) (D)

Figure 2: Graph composition example: C = A⊕B and D = B⊕A.

Intuitively, the composition operator favors its right operand, unless that operand
is ⊥ (undefined); in this case alone, it uses the left operand. In particular, this
means that composition is not commutative: for a given a ∈ L in, a⊕ 0 = 0 but
0⊕a = a. Now we overload the composition operator on the graphs themselves.
Figure 2 contains some sample graphs and their compositions.

Definition 7 (subgraph composition) Let G be a graph. Let G1,G2 ⊆ G be 0-1
subgraphs. The composition of G1 and G2, denoted G1 ⊕G2, is the subgraph of
G whose characteristic function is µG1⊕G2(v) = µG1(v)⊕µG2(v) for all v ∈V (G).

3 Properties

Lemma 2 (characteristic of composition) Let G be a graph, and G 1,G2 ⊆ G be
0-1 subgraphs. The characteristic function µG1⊕G2 of their composition can be
restated as follows:

µG1⊕G2(v) =

µG2(v) if v ∈V (G2)
µG1(v) if v ∈V (G1)\V(G2)
⊥ if v �∈V (G1)∪V(G2)

for all v ∈V (G).

Proof. Definition 7 states that µG1⊕G2(v) = µG1(v)⊕µG2(v). • For v ∈ V (G2),
µG1(v)⊕ µG2(v) = µG2(v) since µG2(v) ∈ Lin ∪ {0}. • For v ∈ V (G1)\V (G2),
µG1(v)⊕ µG2(v) = µG1(v)⊕ ⊥= µG1(v). • Finally, when v �∈ V (G1) ∪V (G2),
µG1(v)⊕µG2(v) =⊥⊕⊥=⊥. �

Lemma 3 (subgraph containment) Let G be a graph, and G1,G2 ⊆ G be 0-1
subgraphs. Then, G2 ⊆ (G1 ⊕G2) ⊆ (G1 ∪G2).

Proof. Trivially, V (G1 ⊕G2) = V (G1 ∪G2), so this property is about the edge
sets. It suffices to show that E(G1) ⊆ E(G1 ⊕G2) ⊆ E(G1 ∪G2). The composed
edge set E(G1 ⊕G2) is the union of the following:

[

v∈V(G2)∧µG2
(v)∈Lin

EG(v,µG2(v)) and
[

v∈V(G1)\V(G2)∧µG1
(v)∈Lin

EG(v,µG1(v))

The former is precisely equal to E(G2), because G2 is a 0-1 subgraph. The latter is
a subset of the edges in E(G1). Thus, we have E(G1)⊆E(G1⊕G2)⊆ E(G1∪G2)
as required. �

Lemma 4 (path containment) Let G be a graph, and G1,G2 ⊆ G be 0-1 sub-
graphs. If P = eP′ is a path in G1 ⊕G2 and e ∈ E(G2), then P is completely
contained in G2.

Proof by induction on the length of path P ′. • Base case: P′ is the empty path, so
P = e. Since e ∈ E(G2), the conclusion holds. • Induction: assume the property
holds for a path of length k. Once again, let P = eP ′ in G1⊕G2 where e ∈ E(G2),
and length of P′ is k +1. We can write P as eP′′(x,a/b,x′) where P′′ is a path of
length k from the destination vertex of e to x. Since G 1 ⊕G2 is a 0-1 subgraph
of G, µG1⊕G2x = a. Using the induction hypothesis, the path eP ′′ is completely
contained in G2, so x ∈V (G2) too. Using lemma 2, µG1⊕G2(x) = µG2(x). Hence,
µG2(x) = a and (x,a/b,x′) ∈ E(G2). Therefore, the path eP ′′(x,a/b,x′) is com-
pletely contained in G2. �

Lemma 5 (acyclic) Let G be a graph, and G1,G2 ⊆ G be 0-1 subgraphs. If G1

and G2 are acyclic, then so is G1 ⊕G2.

Proof by contradiction. Suppose that G1 and G2 are acyclic, but G1 ⊕G2 is not.
Hence, there exists a cycle C in G1 ⊕G2. Since G1 is acyclic, then cycle C must
contain at least one edge from G2. Let e = (x,a/b,x′) be such an edge. We can
write C = eC′ where C′ is a path from x′ back to x. Using lemma 4, C is completely
contained in G2. Hence, G′ contains a cycle, which contradicts the premise. �

Lemma 6 (compositional closure) Let G be a graph and x,y,z ∈ V (G). Let G1

and G2 be 0-1 subgraphs of G. If G1 = CTS(x,y) and G2 = CTS(y,z) then (G1 ⊕
G2)[x] is a convergent transfer subgraph from x to z in G.

Proof. We first consider the boundary cases. • If x = z then x is the sink of a
CTS, so µG1⊕G2(x) = 0. Specifically, (G1⊕G2)[x] is the subgraph ({x}, /0), which
is a CTS from x to z(= x) in G. • If x = y then G1 is the trivial subgraph and
(G1 ⊕G2)[x] = G2[x] = G2, which is a CTS from x(= y) to z in G.

• Now consider the case x �= z∧ x �= y∧ y = z. This time, G2 is the trivial
subgraph and G1∪G2 = G1 because z(= y) is also in G1. From lemma 3, we have
G1 ⊕G2 ⊆ G1. Observe that µG1(v) = µG1⊕G2(v) for v ∈ V (G1). This implies
G1 ⊆ G1 ⊕G2. Hence, (G1 ⊕G2)[x] = G1[x] = G1, which is a CTS from x to
z(= y) in G.

Next, consider x,y,z to be pairwise distinct. Let v ∈V ((G1⊕G2)[x]). To show
that property 2 of definition 1 is satisfied, it suffices to show that there is a path
from v to z in (G1 ⊕G2)[x].

• Case 1: suppose v ∈ V (G2). Because G2 = CTS(y,z), there exists a path
PG2(v,z). The same path is in G1 ⊕G2 because G2 ⊆ G1 ⊕G2. Since v is reach-
able from x in (G1 ⊕G2)[x], all vertices in PG2(v,z) are in R(G1⊕G2)x. Hence,
PG2(v,z) is in (G1 ⊕G2)[x].

• Case 2: suppose instead that v ∈ V (G1)\V (G2). Because G1 = CTS(x,y),
there is a path PG1(v,y) of length k > 0. We write

PG1(v,y) = (w0,a0/b0,w1) . . . (wk−1,ak−1/bk−1,wk)

where w0 = v and wk = y. Let S = {w1,w2, . . .wk−1}∩V(G2) represent the set of
vertices in the path that are also part of G2. There are two sub-cases:

• Case 2a (S = /0): µG1⊕G2(wi) = ai for 0 ≤ i < k, using lemma 2. It follows
that PG1(v,y) is in G1⊕G2. Since v ∈ R(G1⊕G2)x, all vertices in PG1(v,y) are in
R(G1⊕G2)x. Hence, the concatenation PG1(v,y)P(G1⊕G2)[x](y,z) is a path from v
to z. The existence of P(G1⊕G2)[x](y,z) follows immediately from case 1.

• Case 2b (S �= /0): let j be the smallest index such that w j ∈ S. j �= 0 because
wj(= v) �∈ V (G2) and therefore w j �∈ S. However, j exists in the range 0 < j <
k and the prefix {w1, . . .wj−1} ∩ S = /0. From cases 1 and 2.1, it follows that
PG1(v,wj)PG1⊕G2(wj,z) is a path from v to z in (G1 ⊕G2)[x], where PG1(v,wj) is
the path which consists of the first j edges of PG1(v,y).

Also, it is clear now that z ∈ V ((G1 ⊕G2)[x]). For property 3 of definition 1,
it suffices to observe that (G1 ⊕G2)[x] is a 0-1 subgraph of G and z is the only
vertex with no outgoing edges. Moreover, property 4 of definition 1 is readily
satisfied from our use of characteristic functions. From lemma 5 and definition 5,
(G1 ⊕G2)[x] is acyclic. Thus, it is a CTS from x to z. �

We are now ready to establish the composition theorems. Let G 1,G2, . . .Gn

be a sequence of 0-1 subgraphs of a given graph G and x ∈ V (G). For n ≥ 1 we
define fn as a function of n+1 variables, as follows:

f1(G1,x) = G1[x]
fk(G1,G2 . . .Gn,x) = (fn−1(G1,G2 . . .Gn−1,x)⊕Gn)[x] if n ≥ 2

Theorem 1 (sequential construction) Let G be a graph and G1,G2, . . .Gk be a
sequence of 0-1 subgraphs of G. Let x1,x2, . . .xk+1 ∈V (G). If Gi = CTS(xi,xi+1)
for each i in the range 1 . . .k, then fk(G1,G2, . . .Gk,x1) is a convergent transfer
subgraph from x1 to xk+1 in G.

Proof by induction on k, using lemma 6 (compositional closure). �

The previous theorem shows that CTSs can be sequentially combined, to achieve
transitivity. The following result indicates the way to combine CTSs to maintain
parallel transfer to the same destination.

Theorem 2 (parallel construction) Let G be a graph and G1,G2, . . .Gk be a se-
quence of 0-1 subgraphs in G. Let x1,x2, . . .xk,y ∈ V (G). If Gi = CTS(xi,y) (for

each i ∈ {1 . . .k}), then (G1 ⊕G2⊕ . . .⊕Gk)[x j] is a CTS from x j to y in G, for all
j ∈ {1 . . .k}.

Proof by induction on k. It holds trivially for k = 1; we assume it holds for k
and demonstrate k + 1. Given the left-associativity of ⊕, we write ⊕ k+1

i=1 Gi =
(G1⊕ . . .⊕Gk)⊕Gk+1 = (⊕k

i=1Gi)⊕Gk+1. By lemma 3 (subgraph containment),
definition 5 (projection), and the premise, we have that ((⊕ k

i=1Gi)⊕Gk+1)[xk+1] =
Gk+1 is a CTS from xk+1 to y.

Let j ∈ {1 . . .k}. We must show that ((⊕k
i=1Gi)⊕Gk+1)[x j] is a CTS from

x j to y. The proof is similar to that of lemma 6. • The result is immediate if
x j = xk+1. • If x j = y then (⊕k+1

i=1 Gi)[x j] = ({y}, /0) which is a trivial CTS from
x j(= y) to y.

• If xk+1 = y then Gk+1 = ({y}, /0) is the trivial CTS from xk+1(= y) to y.
We can invoke the induction hypothesis by showing that ⊕ k+1

i=1 Gi = ⊕k
i=1Gi. To

simplify notation, let A = ⊕k
i=1Gi and B = ⊕k+1

i=1 Gi = A⊕Gk+1. It is sufficient to
show that µA(v) = µB(v) for all v ∈ V (G). Using lemma 2, there are three sub-
cases. • If v ∈ V (Gk+1) it means that v = y, and µB(v) = µGk+1(v) = 0. But, by
the induction hypothesis, A is a CTS with sink y, which means µA(v) = 0 too. • If
v∈V (A)\V (Gk+1) then µB(v) = µA(v) by lemma 2. • If v �∈V (A)∪V (Gk+1) then
µB(v) =⊥. By definition 4, µA(v) =⊥ too since v �∈V (A).

Now we may focus on the case where x j,xk+1, and y are pairwise distinct.
We continue to use the abbreviations A and B. Let v ∈ V (B[x j]). • Case 1:
if v ∈ V (Gk+1) then there exists a path PGk+1(v,y) which is also contained in B
(by lemma 3) and B[x j] (because v is reachable from x j). Otherwise, v ∈ V (A)
and there exists a path P = PA[x j](v,y). • Case 2a: if none of the paths of Gk+1

intersects P at a vertex other than y, then P is contained in B and B[x j]. • Case 2b:
otherwise, let w be the closest intersecting vertex to v. Use the reasoning of cases
2.1 and 1 to construct a path from v to w and a path from w to y, respectively. This
shows that B[x j] satisfies property 2 of definition 1. As in the proof of lemma 6,
B[x j] satisfies the other properties of transfer subgraphs, and is acyclic. Hence, it
is a CTS from x j to y. �

4 Conclusion

The construction of transfer sequences from non-deterministic specifications is an
important problem for protocol conformance testing. We have defined two opera-
tors (composition and projection) and proved formally that they may be employed
in the incremental construction of convergent transfer subgraphs within general
directed graphs.

We believe this is the first fully general result to address CTS construction.
Previous results took advantage of certain properties of the graph – the absence
of cycles [3, 6, 5], or sparse non-determinism [3] – and thus have limited applica-
bility. In future work, we expect this framework to be instrumental in the design

of new space- and time-efficient algorithms for CTS construction, applied to real
specifications.

References

[1] M. Ghriga and P. G. Frankl. Adaptive testing of non-deterministic communi-
cation protocols. In Protocol Test Systems VI, pages 347–362. Elsevier/North-
Holland, 1994.

[2] M. Ghriga and P. Kabore. Un algorithme nondéterministe pour la génération
de sous-graphes de transfer convergents. In Actes du Colloque Francophone
sur l’Ingénierie des Protocoles. Hermes, 1999.

[3] M. Ghriga and P. Kabore. On the existence of convergent transfer subgraphs
in labeled directed acyclic graphs. Congressus Numerantium, 136:207–214,
1999.

[4] H. Kloosterman. Test derivation from non-deterministic finite state machines.
In Protocol Test Systems V, pages 297–308. Elsevier/North-Holland, 1993.

[5] W.-N. Li. Convergent transfer subgraph characterization and computation. In
Proc. Int’l Symp. on Circuits and Systems, volume 3, pages 248–251. IEEE,
May 2003.

[6] W.-N. Li, M. Ghriga, and P. Kabore. A polynomial time algorithm for de-
ciding convergent transfer subgraphs in labeled directed acyclic graphs. Con-
gressus Numerantium, 144:97–111, 2000.

[7] A. Petrenko, N. Yevtushenko, A. Lebedev, and A. Das. Non-deterministic
state machines in protocol conformance testing. In Protocol Test Systems VI,
pages 363–378. Elsevier/North-Holland, 1994.

[8] K. Sabnani and A. Dahbura. A protocol test generation procedure. Computer
Networks and ISDN Systems, 15(4):285–297, 1988.

[9] P. Tripathy and K. Naik. Generation of adaptive test cases from non-
deterministic finite state models. In Protocol Test Systems V, pages 309–320.
Elsevier/North-Holland, 1993.

