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Abstract

The extensible markup language XML has become indispensable in many areas,
but a significant disadvantage is its size: tagging a set of data increases the space
needed to store it, the bandwidth needed to transmit it, and the time needed to parse
it. We present a new compression technique based on the document type, expressed
as a Relax NG schema. Assuming the sender and receiver agree in advance on the
document type, conforming documents can be transmitted extremely compactly. On
several data sets with high tag density this technique compresses better than other
known XML-aware compressors, including those that consider the document type.

1. Motivation
In recent years, the extensible markup language XML [3] has become indispensable for
web services, document markup, conduits between databases, application data formats,
and in many other areas. Unfortunately, a significant disadvantage in some domains is
that XML is extremely verbose. Although disk capacity is less often a concern these days,
transmitting XML-tagged data still requires significantly more bandwidth and longer parse
times (compared to a custom binary format, for example).

Compression of XML has been studied from a variety of perspectives. Some researchers
aim to achieve minimal size [1, 4, 13], others focus on efficient streaming [9, 18] — a
balance between bandwidth and encode/decode times — and still others answer XML
queries directly from compressed representations [19]. Following Levene and Wood [12],
we study how the document type or schema can be used to achieve smaller sizes.

Traditionally, one writes a document type definition (DTD) to constrain the sequencing
of tags and attributes in an XML document. For most commonly-used XML formats, a
DTD already exists. The DTD language is simple, but not terribly expressive, so a few
competitors have arisen. We focus in particular on Relax NG by Clark and Murata [6]. It is
expressive, but unlike XML Schema, it has a clean formal model [15] that is the foundation
of our compression technique.
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start = stm

stm = element seq { stm+ }

| element assign { var, exp }

| element print { exp* }

exp = element num { attribute val {text}, empty }

| element id { var, empty }

| element binop { attribute id {text}?, op, exp, exp }

| element exp { attribute ref {text} }

var = attribute var {text}

op = attribute op { "add" | "sub" | "mul" | "div" }

Figure 1: Relax NG schema in compact syntax. It defines the grammar for a simple
sequential language – after Wang et al. [21] – expressed in XML.

<seq><assign var=’x’><num val=’7’/></assign>

<print><binop op=’add’>

<binop id=’r1’ op=’mul’><id var=’x’/><id var=’x’/></binop>

<binop op=’sub’><exp ref=’r1’/><num val=’5’/></binop>

</binop></print>

</seq>

Figure 2: XML code representing a program in the sequential language of figure 1.
When run, the program would output 93 (= 49 + 49 – 5).

Figure 1 contains a simple Relax NG schema written using the compact syntax. (There
is an equivalent XML syntax that would make this example about 4 times longer.) This
schema specifies the grammar for a small sequential language with variables, assignment,
numbers, and arithmetic expressions. Note the use of regular expression operators (+*?|)
and the id/ref attributes for reusing common sub-expressions.

Our original motivation for studying XML compression was to investigate the use of
XML to represent abstract syntax trees and intermediate languages in compilers. The
language in figure 1 is based on an example given by Wang et al. [21]. They developed
an abstract syntax description language (ASDL) for specifying the grammars of languages,
generating type definitions in multiple languages, and automatically marshaling data struc-
tures to an opaque but portable binary format. We hypothesize that XML and all its related
libraries, languages, and tools could replace ASDL and prove useful elsewhere in the im-
plementation of programming languages.

Figure 2 contains a small program in the sequential language, valid with respect to the
Relax NG schema in figure 1. In conventional notation, it would be written as x := 7;

print [x*x + (x*x - 5)], but the common sub-expression x*x is explicitly shared via
the id/ref mechanism. (One of the limitations of ASDL is that it could represent trees
only, not graphs; however, managing sharing is essential for the efficient implementation of
sophisticated intermediate languages [16].) These figures will serve as a running example
in the remainder of the paper.

The main contribution of this paper is to describe and analyze a new technique for com-
pressing XML documents that are known to conform to a given Relax NG schema. As a



simple example of what can be done with such knowledge, the schema of figure 1 requires
that a conforming document begins with either <seq>, <assign>, or <print>; so we need
at most two bits to tell us which it is. Similarly, the <binop> tag has an optional id at-
tribute and a required op attribute. Here, we need just one bit to indicate the presence or
absence of the id and two more bits to specify the arithmetic operator. (The data values
are separated from the tree structure and compressed separately.) For this system to work,
the sender and receiver must agree in advance on precisely the same schema. In that sense,
the schema is like a shared key for encryption and decryption.

We are not the first to propose compressing XML relative to the document type – an
analysis of related work appears in section 2 – but ours is the first such effort in the context
of Relax NG, and in section 4 we report results that, on several data sets, improve upon
other compression efforts that are known to us. The technique itself is detailed in section 3
and we close in section 5 by discussing limitations, consequences, and directions for future
research.

2. Related work
A common theme among XML compressors is separating the tree structure from the text
or data. Here we review several related techniques, paying close attention to the extent
to which they use the schema or DTD. Some ignore it entirely, others optionally use it to
optimize their operations, and some (like us) regard it as essential.

Girardot and Sundaresan [9] describe Millau, a modest extension of WAP binary XML
format, that uses byte codes to represent XML tag names, attribute names, and some at-
tribute values. Text nodes are compressed with a deflate/zlib algorithm [8] and the types of
certain attribute values (integers, dates, etc.) are inferred and represented more compactly
than as character data. Millau does not require a DTD, but if present it can be used to build
and optimize the token dictionaries in advance.

Sundaresan and Moussa [18] build on this work, proposing differential DTD compres-
sion, which sounds similar in spirit to our idea. Unfortunately, the paper is short on imple-
mentation details, and they report poor run-time performance (of that particular technique)
on all but the simplest sorts of schemas. Specifically, it was unable to compress Hamlet1 in
a reasonable amount of time; they were forced to abort the computation and omit that test
case from the results.

Liefke and Suciu [13] implemented XMill. Its primary innovation compared to others
mentioned here is to group related data items into containers that are compressed sepa-
rately. To cite their example, “all <name> data items form one container, while all <phone>
data items form a second container.” This way, a general-purpose compressor such as de-
flate will find redundancy more easily. Moreover, custom semantic compressors may be
applied to separate containers: date attributes, for example, could be converted from char-
acter data into a more compact representation. One of the main disadvantages of this
approach is that it requires custom tuning for each data set to do really well.

Cheney’s xmlppm [4] is an adaptation of the general-purpose prediction by partial match
compression to XML documents. The path from root to leaf acts as a context for compress-
ing the text nodes, which provides benefits similar to those of XMill’s containers. Adiego

1from the Shakespeare XML corpus: http://www.ibiblio.org/bosak/xml/eg/shaks200.zip



et al. [1] augment this technique with a heuristic to combine certain context models; this
yields better results on some large data sets. In our experiments, xmlppm was clearly the
main contender. We expected Cheney’s DTD-conscious compression techniques [5] to fare
especially well, but as he reports, “for large data sets, dtdppm does not compress signif-
icantly better than xmlppm.” In our tests, dtdppm never beat xmlppm by more than a few
percent, and usually did worse; see section 4.

Toman [20] describes a compressor that dynamically infers a custom grammar for each
document, rather than using a given DTD. There is a surface similarity with our technique
in that a finite state automaton models the element structure, and is used to predict future
transitions. His system was tested on three classes of data, but it never beat xmlppm on
either the compression ratio or the run time.

Levene and Wood [12] propose a DTD-based encoding in much the same spirit as our
work; however, there appears to be no implementation or experimental results. Instead,
they prove optimality, but under the assumption that the DTD is non-recursive, which is
not generally true for our target application area (representing intermediate languages).

Two newer efforts claim to beat xmlppm on some data sets by using information from
the document type. Subramanian and Shankar [17] analyze DTDs to generate finite state
automata and invoke arithmetic encoding at choice points. Harrusi et al. [10] describe a
staged approach, where a DTD (which they call a dictionary) is converted to a context-free
grammar for a specialized parser. Both of these appear similar in spirit to our approach,
although we are the first to explore it in the context of Relax NG specifically. At press
time, we have not yet obtained implementations of these competing techniques, but we
look forward to performing direct comparisons in the future.

3. The technique
Our technique has been implemented in Java, as a tool called rngzip that supports much
of the same command-line functionality as gzip. We benefitted greatly by using the Bali
system by Kawaguchi,2 a Relax NG validator and validatelet compiler. It builds a determin-
istic tree automaton [7, 15] from the specified schema. If also given an XML document,
it checks whether the XML is accepted by the automaton. Alternatively, it can output a
hard-coded validator for that particular schema in Java, C++, or C#.

We borrow the schema-parsing and automaton-building code from Bali. A diagram
of the automaton induced from our sequential language schema is found in figure 3. The
octagon-shaped states (1, 3, 8) are final/accept states. The transitions are labeled with XML
tags or attribute predicates. The meanings of these predicates are described by example in
the following table:

@id contains an id attribute
!@id does not contain an id attribute
!@~id contains no attributes except possibly id

!@~(op| id) contains no attributes except possibly op or id
!@* contains no attributes at all

2http://www.kohsuke.org/relaxng/bali/doc/
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a ‹seq› 7

b ‹assign› 5

c ‹print› 2

3

7
!@*

6

a ‹seq› 7

b ‹assign› 5

c ‹print› 2

8d

a ‹seq› 7

b ‹assign› 5

c ‹print› 2
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a ‹id› 17

b ‹binop› 15

c ‹num› 19
d ‹exp› 12
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12 11
!@~ref

3
@ref 9

b ‹binop› 15
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!@~(op|id) b @id 9 @op 20

a ‹id› 17

c ‹num› 19

d ‹exp› 12

9

text

20 3
b ‘sub’

a ‘add’

c ‘mul’

d ‘div’

a !@id

Figure 3: The tree automaton induced from the Relax NG schema in figure 1, and
annotated with letters (a, b, c, . . . ) at the choice points.

When the label of a transition is followed by a number, we jump to that state as a subroutine
to validate the children of the current XML node (or the value of the current attribute).

Let’s study how the program <print><num val="42"/></print> is validated by this
automaton. Starting from state zero, there is a transition for <print>, so we push the
target state 3 onto a stack and jump to state 2 as indicated by the transition. State 2 requires
that the <print> just seen has no attributes. State 1 has a transition matching <num> so
we push the target state 1 onto the stack and jump to 19. It requires that <num> has no
attributes except val, and that val contains text. We pop back up to state 1. The close tag
</print> is accepted in this final state, and we pop back up to 3. The end of the document
is accepted in this final state, and (since the stack is now empty) the document is declared
valid.

Given this automaton, a receiver can reconstruct an entire XML document by transmit-
ting very little information. Whenever there is a choice point in the automaton, we just
transmit which transition was taken. Whenever we encounter the text transition, we trans-



mit the matching text. Our program assigns unique labels to each outgoing transition from
a choice point, shown in figure 3 as a, b, c, etc. The choice points in this automaton are
states 0, 1, 6, 8, 10, 14, 20, and 21. Note that final states induce an additional choice: the
automaton can either follow an outgoing transition, or stay and accept. This is why states
1 and 8 have a label inside the state.

So, in the case of the simple print statement above, we would just need to transmit
c, c, "42", e. Similarly, if we transmit b, "x", c, "8", the receiver ought to be able to
reconstruct <assign var="x"><num val="8"/></assign>. Of course, it is even better
than it looks: we are not transmitting the ASCII character b; since there are just 3 choices
from state 0, we need only 2 bits to indicate which one, and 2 more bits for transition c
from state 10. This is why it is critical that sender and receiver agree on precisely the same
schema, and moreover that their implementations label transitions in the same order. (We
had to impose a specific ordering of transitions on Bali, since it used a map based on object
hash codes, which could vary between runs.)

Any white space outside of text nodes will be lost with this technique, but this is con-
sidered ignorable by the XML document model anyway, and it is trivial for the receiver to
reformat the output if desired. In many cases, the decompressor will simply provide SAX
events to some application, so the white space will not be missed; this is significantly more
efficient than decompressing to a temporary file and then re-parsing it.

Now we step back to discuss other implementation details. Logically, the compressor
outputs 3 distinct streams. The first is simply for configuration information: the URI of the
schema, a checksum of the automaton, and an inventory of the other streams and how they
are compressed. The second stream is for the bits that encode the tree structure, and the
third is for the data values. We wrap the data stream with a generic compressor, such as
Java’s GZIPOutputStream (but any compatible filtering output stream can be easily substi-
tuted). Command-line options control whether and how each logical stream is compressed,
and the results are compared in section 4.

Physically, these streams are combined into one by dumping each buffer as it becomes
full, with a short header encoding the stream ID and block size. We call this a multi-
plexed stream and aimed initially to optimize it for efficient streaming, so that the memory
requirements of both sender and receiver could be sub-linear in the total size of the docu-
ment. Unfortunately, a particular property of Relax NG seems to conflict with the goal of
streaming; see section 5.

In addition to the fixed-length encoding of transitions as bits, we implemented an adap-
tive Huffman encoding [11]. Using the fixed encoding, a choice point with 16 transitions
will use 4 bits each, even if one transition is taken thousands of times and the rest are used
sparingly, if at all. With the adaptive technique, the Huffman tree eventually encodes the
more frequent transitions with proportionally shorter bit strings. Sometimes this technique
beats the others, but it is not clear that it is worth the extra implementation complexity; this
is also explored further in the next section.

4. Results
We compared rngzip with some other compressors – both generic and XML-specific – on
several data sets; the results are in figure 4. In these experiments, the competition was gzip,
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Figure 4: Effectiveness of several compressors over various data sets. The y-axis
depicts compressed size, relative to gzip at 1.0. These are averages over many
document instances, so error bars show one standard deviation above and below
the mean. Beneath the data set labels are the average uncompressed sizes, the
number of documents in the set (n), and the ratio of tags to text in the original (r,
excluding ignorable spaces between tags).

bzip2, XMill version 0.8 [13], xmlppm 0.98.2 [4], and dtdppm 0.5.1 [5]. Unfortunately,
this (alpha) version of dtdppm rarely beat xmlppm by more than a few percent, and on
average did significantly worse. For this reason, we omitted its results from the graph.

The gene and pubmed data sets were from the NCBI.3 Entrez Gene contains gene-
specific information and focuses on the genomes that have been completely sequenced.
We typed ‘blood’ into the search field and arbitrarily chose ten of the 3,315 results to save
as XML files. PubMed includes citations from life science journals for biomedical articles.
Similarly, we typed ‘database’ into the search box, and arbitrarily chose ten of the 80,032
records to save as XML files. The movies and actors came from IMDB, converted to XML
by W4F.4 Niagara is a collection of several other data sets – cars, clubs, company profiles,
stock quotes, etc. – from the Niagara Query Engine.5 Since the structure and results for
these sets were fairly similar, we grouped them together. Likewise, we grouped course
catalog data sets from the repositories at UW6 and UBC.7 DBLP provides bibliographic
information on computer science journals and proceedings; this data set was also obtained
from the UW repository. The sets sigmod, issue, and proc are various bibliographic data

3http://www.ncbi.nlm.nih.gov/
4http://db.cis.upenn.edu/research/w4f.html
5http://www.cs.wisc.edu/niagara/data.html
6http://www.cs.washington.edu/research/xmldatasets/www/repository.html
7http://www.cs.ubc.ca/nest/dbsl/xmlRep.html



from ACM SIGMOD.8 Finally, shakes is the previously mentioned Shakespeare corpus,
including all the plays. Unfortunately, we were not able to find any real data sets using
Relax NG natively, so the schemas we used were converted from DTD format by trang.9

To clarify the results shown in figure 4, the bars show the compressed size of each
data set relative to the size produced by gzip (at 1.0). We found that rngzip performed
exceptionally well – better than any other compressor we tried – for the gene, pubmed,
and movies data sets. For the actors and issue data, rngzip is in the same neighborhood
as xmlppm. Unfortunately, rngzip did not beat xmlppm on the remaining data sets. One
factor in the effectiveness of our technique is the ratio (r) of tags to text in the XML source.
The gene schema is almost ludicrously ‘taggy.’ Here is how a time-stamp is represented:

<Date><Date_std><Date-std>

<Date-std_year>2006</Date-std_year>

<Date-std_month>4</Date-std_month>

<Date-std_day>7</Date-std_day>

<Date-std_hour>18</Date-std_hour>

<Date-std_minute>55</Date-std_minute>

<Date-std_second>0</Date-std_second>

</Date-std></Date_std></Date>

We do particularly well on this because the long tag names are stored in the shared schema
instead of the compressed output, and the tag structure is very regimented. On data sets
such as shakes that consist more of lightly tagged text, our performance predictably de-
grades to that of gzip; we are after all using GZIPOutputStream to compress the data
stream.

This ratio, however, is not the entire story. The pubmed set has a tag-to-text ratio in the
same neighborhood as shakes, but rngzip performs far better on pubmed. This difference
is explained by the structure of the schema. The tags in Shakespeare are somewhat few
and repetitive (speech speaker line line line. . . ) which is good for gzip, but there
are technically many choices on every line (another line, end of speech, end of scene, end
of act, . . . ) which is a disadvantage for rngzip. Nevertheless, it performs better than the
differential DTD compression of Sundaresan and Moussa [18], which could not even com-
press Hamlet because of this property. Replacing our internal uses of GZIPOutputStream
with BZip2OutputStream10 would instantly make our tool more competitive on data sets
such as sigmod, shakes, and dblp in terms of compressed sizes (at the cost of longer com-
pression times). Incidentally, schemas representing compiler languages are more like gene
and pubmed than Shakespeare, so we do expect rngzip to perform well in our target ap-
plication area.

In section 3, we mentioned some variants, such as whether to use adaptive Huffman
encoding, and how to compress each logical stream. For the results in figure 4, we used
adaptive Huffman, and then applied GZIPOutputStream to both it and the data stream.
This is the best approach on average, but in particular cases other settings perform slightly

8http://www.acm.org/sigs/sigmod/record/xml/
9http://www.thaiopensource.com/relaxng/trang.html

10http://jakarta.apache.org/



better. In our experiments, we found that the choice of tree encoder hardly made a differ-
ence; Huffman and fixed are nearly always equal in the end; the exception was for DBLP
– our largest data set, at over 100 MB – where Huffman did make a significant differ-
ence. The effectiveness of compressing the bit stream after encoding is very situational;
we found that it helps if the document is over 200 kb originally. Compressing the data
stream is essential in every case.

5. Discussion and future directions
It is clear from the previous section that the effectiveness of rngzip across all the data sets
is, at best, mixed. We have reason to believe, however, that the advantages of our technique
on highly tagged, nested data are largely orthogonal to the benefits bestowed by xmlppm

and XMill. This leaves open the hope of achieving the best of both worlds. In particular,
the container expressions supported by XMill could be adopted wholesale and compressed
separately into additional sub-streams of our multiplexed stream. We have even higher
hopes for applying a context-sensitive PPM-based compressor (instead of gzip) to the data
stream, but we leave this as future work.

We previously discussed several competing efforts on compressing XML data, but an-
other piece of work deserves mention, from the domain of intermediate language repre-
sentation. Amme et al. [2] encode programs using two innovative techniques: referential
integrity and type separation. The effect is similar to what we do with XML, in that type-
incorrect programs cannot be encoded at all. The compressed data are well-formed by
virtue of the encoding.

In section 3, we mentioned a certain property of Relax NG that conflicts with the goal
of streaming. Within an element specification, attributes and child elements can be inter-
mixed; the attributes need not appear first. Here is an example where the element <top>
has some ‘big’ content; imagine megabytes of data and enormous sub-trees.

top = element top { big, opt }

opt = attribute opt { text } | element opt { ... }

Following that, there is a choice between an <opt> element and an opt attribute (which
applies to the parent element, <top>). What this means for decompressing is that we
cannot output the <top> element until we know the result of the opt choice point, but that
comes after the megabytes of data that must now be buffered. There is probably a work-
around in the form of an automaton transformation that brings all the attribute transitions
to the front. Martens et al. [14] provide formal evidence supporting this possibility: “[in
the] tree grammars of Murata et al. [15]. . . every element in a document can be typed when
its opening tag is met.”

In addition to text and fixed strings used in figure 1, Relax NG can validate content
using external libraries, such as the data type component of XML Schema. Our tool does
not yet support any such libraries, but we hope in the future to use more compact encodings
for content such as dates, n-bit integers, and base-64 binary data.

Another interesting extension – related to Bali’s validatelet capability – is to generate the
code for a compressor and decompressor specialized to a particular schema. This could be
a real advantage for applications that save their documents and data in XML-based formats.



We hope that this line of work – on compact representations of XML – ultimately spells
the end of the era of custom binary formats for storing or transmitting data.
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