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Abstract

Modern dynamic web services are really computer programs. Some parts of these
programs run off-line, others run server-side on each request, and still others run
within the browser. In other words, web publishing is staged computation, either for
better performance, or because certain resources are available in one stage but not
another. Unfortunately, the various web programming languages make it difficult
to spread computation over more than one stage. This is a tremendous opportunity
for multi-stage languages in general, and for MetaOCaml in particular.

We present the design of MetaOCaml Server Pages. Unlike other languages in
its genre, the embedded MetaOCaml code blocks may be annotated with staging
information, so that the programmer may safely and precisely control which compu-
tation occurs in which stage. A prototype web server, written in OCaml, supports
web sites with both static and dynamic content. We provide several sample programs
and demonstrate the performance gains won using multi-stage programming.

1 Motivation

Modern dynamic web sites support many features for user collaboration and
personalization. To provide such services, web sites contain custom computer
programs, often written in one of a family of programming languages that
have grown up around (or been adapted for) the web.

There is at least one dictum of program design that we cannot escape on the
web: performance matters. As a web publisher, visitors are your livelihood. But
will your servers and scripts be ready for the day that your site is featured on
prime time television, or on slashdot.org? If tens of thousands of potential
users drop by to find a sluggish (or dead) server, most of them will never
return [11].
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This happens so often to sites featured on Slashdot—a “news for nerds” dis-
cussion site—that it has come to be known as the Slashdot effect: “a site that
might be designed to handle a few hundred hits per day can suddenly find it-
self handling that many a second.” [22] Although some ISPs have bandwidth
limitations, Slashdot creator Rob Malda says most sites that fail suffer from
poor planning and architecture:

Anybody who has a pretty good understanding of web design [has] done
a good job of learning what information to cache [and] what needs to
be pre-generated. So when you’re actually loading a page, even if it’s
a complicated page that looks dynamic and custom, on the back end
of that, what they’re really doing is putting together a bunch of puzzle
pieces that have been pre-generated, and making the simplest, quickest
decisions they possibly can. [22]

Malda’s observation points (informally) to the idea of staging the computation
performed by a web service. Indeed, web publishing is an application area that
is naturally staged: 1

(1) Content (text, images, programs, etc.) created off-line is uploaded to the
server—the publish stage;

(2) A user’s browser requests content, which is transferred from server to
client—the serve stage; and finally

(3) The content is rendered within the user’s browser—the display stage. 2

At each stage there is an opportunity for computation to take place. 3 Con-
sider the example of a conference calendar, such as the one illustrated in
figure 1. After specifying your areas of interest (perhaps using the ACM clas-
sifications), the server delivers a table of matching conferences, with dates,
locations, deadlines, and links to conference web sites. Events remain in the
table until a few weeks after they occur, but deadlines that have passed are
marked in red. You may click on any column header to change the sort order.
The next time you visit, the server remembers your preferences. Perhaps it
even sends you email to remind you of upcoming submission and registration
deadlines.

Now, how might this conference service be staged? Can anything be computed
off-line (at the publish stage)? Yes: since this page is probably part of a much

1 The literature on meta-programming has yet to acknowledge web services [2] as
a potential application area, although Sheard [18] mentions mobile code. Analysis
of other related work is in section 6.
2 Increasingly in modern web applications, the rendered content is interactive—
responsive to user input without a round-trip to the server.
3 Nørmark [15] recognized these three stages as binding times, calling them gener-
ated, calculated, and dynamic documents, respectively.
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Fig. 1. A simple conference calendar web service.

larger site (whose structure does not change every day), the menus and other
navigation aids can be laid out in advance. We will not know which conferences
to display until the user presents some identification (in the form of a ‘cookie’),
but since the conference data change infrequently, it may help to prepare the
text of each row in advance.

During the serve stage, we look up the user’s topic preferences, and ship out
just the matching rows. If we delay sorting the table until the display stage,
then the user ought to be able to adjust the sort criteria without any further
communication with the server. What about marking past dates in red? If this
is also delayed until display, then the code could be cached client-side for long
periods of time, yet still behave dynamically.

At this point, we should emphasize the importance of profiling in developing
scalable web services. This particular design for the conference calendar may
not be optimal, depending on the number of entries and the relative speeds of
the CPU, memory, database, network, and disk. Rather, our aim is to provide
a single language in which the various staging possibilities can be expressed
naturally.

This approach is in stark contrast to the status quo, where each system targets
one stage only. The Website Meta Language 4 is an “off-line HTML genera-
tion toolkit” designed for the publish stage. But many other programs (and
countless ad-hoc scripts) spit out HTML pages: LATEX2HTML, for example.
Google reports surprisingly many programs 5 for creating family tree web sites
from genealogy database files; these also count as publish-stage tools.

The serve stage is well-served by the “server page” languages, including JSP,

4 http://www.thewml.org/
5 http://google.com/search?q=gedcom+generate+html
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ASP, and PHP. The Common Gateway Interface (CGI) 6 addresses the serve
stage, as do the embedded interpreters (such as mod perl and mod python for
Apache) that exist to ameliorate some of the overhead of CGI.

There is, relatively, a paucity of languages that operate client-side (display
stage), probably due to the difficulty of securing an installed base of inter-
preters. JavaScript, Java, and Flash applets are notable exceptions.

Imagine implementing the conference calendar, as conceived above, using cur-
rently deployed technology: a Perl script outputs a PHP page which embeds
JavaScript! Values are passed from one stage to the next as strings, and the
programmer must manage all the quoting and persistence issues by hand.

Strictly speaking, these languages are not exclusively confined to the stages
that I have indicated: Javascript can be run server-side, PHP can be run off-
line, and so on. Nevertheless, migrating code between stages is hard, and the
need for quoting and persistence are practically show-stoppers. For comparison
purposes (further described in section 5), we staged some code using PHP.
To achieve persistence of composite variables from one stage to the next, it
contains gems like this:

<?= "<? \$list = unserialize(\"".

addcslashes(serialize($list),’"’).

"\"); ?>\n" ?>

where the serialize library function occurs in stage one and the unserialize
in stage two. Notice that the $ preceding the first occurrence of list is quoted,
but the second occurrence is not. The addcslashes function is needed in
case the serialized representation contains special characters (such as double
quotes or newlines) that would be misinterpreted by the PHP parser in the
next stage. Interpreting the stage-one program guarantees nothing about the
well-formedness of the stage-two program (generated as a string).

We present “MetaOCaml server pages,” a new domain-specific language for
web applications programming. It leverages the staging annotations and static
typing of MetaOCaml [1, 19] to provide safe and precise control over the first
two stages. (We leave further consideration of the display stage as future work.)
The system is implemented as two components: a translator transforms the
server page language into a MetaOCaml module, which then can be incorpo-
rated into our multi-threaded HTTP/1.1 server (also written in MetaOCaml).
The scalability gained by staging certain applications is stunning: in section 5
we describe a directory browsing service where staging yields a factor of 30
improvement in throughput. The unstaged version would certainly succumb
to the Slashdot effect.

6 http://www.w3.org/CGI/
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The next section sketches the design and translation of MetaOCaml server
pages, and section 3 includes some non-trivial examples. The server imple-
mentation is decribed in section 4. Performance and scalability are discussed
in section 5.

2 Design

The general idea of a server page language is that we write HTML by de-
fault, and embed code <? like this ?>. PHP programmers are familiar with
this syntax for embedding code, but in our case, the code itself is written in
MetaOCaml. Here is a trivial MetaOCaml server page:

<i>Hello,</i> <? failwith "Nice try!" ?> world.

and its output:

Hello, Unhandled exception: Failure(”Nice try!”)

The OCaml function failwith raises a Failure exception containing the provided
message. If a code block raises an exception, the message is sent to the client’s
browser in bold-face, and the rest of the page is aborted.

In this example and throughout this paper, a sans-serif font is used for em-
bedded MetaOCaml code, with bold sans reserved for keywords and code
delimiters. A typewriter font is used for MetaOCaml character strings. The
regular serif font is used for plain text and HTML within the server page, and
for comments within the MetaOCaml code blocks.

A very common use of code blocks is to print out (i.e., send to the browser)
the result of evaluating some expression. The syntax <?= e ?> is designated
for this task; e must have type string. Alternatively, messages may be for-
matted with sprintf by placing the format string immediately after the code
delimiter. 7

<?= String.make 8 ’.’ ?> &pi; &divide;

<? "%03d is %.4f" 8, 3.14159 /. 8.0 ?>

The output is:

........ π ÷ 008 is 0.3927

7 In a departure from the standard OCaml syntax for sprintf, the arguments are
comma-delimited. This way, fewer parentheses are required when using the escape
or lift operators on the arguments.
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One more kind of code delimiter is used for declarations; these are lifted to
the top of your program, and evaluated during the publishing stage:

<?^open Unix let cwd = stat "." ?>

Permissions on current directory are <? "%04o" cwd.st perm ?>

Output:

Permissions on current directory are 0755

Once published, this output will never change! The stat call is executed only
once (because it is in a declaration block), not on each request. This is already
a rudimentary kind of staging, but with the annotations of MetaOCaml, we
will gain both flexibility and safety, as we’ll see in the rest of this section.

2.1 Review of staging annotations

MetaOCaml augments OCaml with just three annotations, to indicate how
programs are to be staged. Brackets .< e>. construct future-stage computa-
tion. The code within is not executed in the current stage of computation, but
just returned as a code value that can be run later.

Within brackets, the splice or escape operator .~e may appear. It interrupts the
code construction to evaluate the expression e (in the current stage) and splice
its result into the future-stage computation. Thus, e is required to evaluate to
code of the proper type.

To compute and splice in a regular (non-code) value, we define a function let
lift x = .< x>.; this takes any value and turns it into code. We use it like this:
.< 2 * .~(lift(3+4))>. The addition is performed immediately (because it is
escaped), and the result is spliced into the code, producing .< 2 * 7>.

Finally, there is an operator .! to execute constructed code. Applying it to the
example above, .! .< 2 * 7 >. produces 14.

2.2 Translation to MetaOCaml

To see how all this works, consider how a MetaOCaml server page is translated
into a proper MetaOCaml program, to be executed at publish time. Since the
program is executed before any browser has requested the page, it cannot
directly return or output HTML. Instead, it will construct and return a code
object which is subsequently run on each request (serve stage). The third
(display) stage proposed in section 1 is not yet supported by this design.
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<? pragma args a b c ?>

<?^ declarations ?>

3 <? statements ?>

<?= string to be printed ?>

Regular text.
6 <? "format string" d, e, f ?>

<?^ more declarations ?>

<? let x = expression ?>

9 <? more statements ?>

Bye!

Fig. 2. trans.meta. This file demonstrates the various kinds of code blocks.

module Trans = struct
let lift x = .< x>.

3 declarations
more declarations

let page a b c = .< fun req puts →
6 let arg = Request.arg req in

statements ;
puts ( string to be printed );

9 puts "Regular text.\n";
Printf.kprintf puts "format string" ( d) ( e) ( f ) ;
let x = expression in

12 more statements ;
puts "Bye!\n";

15 >.

end

Fig. 3. trans.ml. An automatic translation of the page in figure 2.

Figure 2 shows a sample MetaOCaml server page, and figure 3 contains its
translation.

Declaration blocks have been lifted to the top; any side effects contained there
are executed when the page is published. The constructed code begins on
line 5.

The a b c represent publish-stage arguments (the names are specified with
pragma args), whereas req and puts are (fixed) serve-stage arguments. req en-
capsulates the HTTP request details, including the headers and query argu-
ments. puts is a function, provided by the server, to transmit text across the
network to the user’s browser. The library function Request.arg of the type
request→string→string option looks up the string value of the request param-
eter with a given name. The option type constructor permits the function to
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return None if there is no matching parameter in the HTTP request. On line
6, arg is defined as a short-cut for retrieving a parameter by name. Since req
and puts are serve-stage arguments, it is incorrect to use them in the publish
(first) stage, and indeed the MetaOCaml type system prevents this. These,
along with the lift function defined near the top, are essentially primitives
from the point of view of the server page code. 8

2.3 Staged code blocks

Now that we understand how the server page is assembled into a staged pro-
gram, the effects of adding MetaOCaml staging operators to our pages should
be predictable. Below is another example using stat, this time to display the
size of some text file on the server. With the serve-stage argument unit, we can
specify whether the size should be expressed in bytes (the default), kilobytes,
etc.

<?^open Unix ?> <? let st = stat "robots.txt" in
let sz = float of int st.st size in
let (amt, unit) = match arg "unit" with

| Some "M" → (sz /. 1048576., "M")
| Some "k" → (sz /. 1024., "k")
| → (sz, "") ?>

<? "%.1f%s" amt, unit ?>

If this text file does not change frequently (and reporting outdated information
is no problem), the stat and float of int calls could be lifted into the declaration
block, as with the permissions example. Furthermore, we may also use lift and
the splice operator to perform the divisions in advance, even though they are
underneath the match (which cannot happen until the serve stage):

<?^open Unix let st = stat "robots.txt"

let sz = float of int st.st size ?>

<? let (amt, unit) = match arg "unit" with
| Some "M" → (.~(lift(sz /. 1048576.)), "M")
| Some "k" → (.~(lift(sz /. 1024.)), "k")
| → (sz, "") ?>

<? "%.1f%s" amt, unit ?>

8 Here are a few finer points about the translator: it discards newlines that im-
mediately follow code blocks (otherwise, figure 3 would be dotted with puts "\n"
statements). It automatically appends a semi-colon or the in keyword to code blocks,
as required (see, for example, lines 7, 11, and 12 in figure 3.) Finally, because the
translator partially parses the OCaml code blocks, it is not confused by code de-
limiters within strings and comments, nor by other uses of < and > as operators.
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Still, the printf conversion is performed at serve time, so maybe it is best to
pre-generate that as well:

<?^open Unix open Printf

let st = stat "robots.txt"

let sz = float of int st.st size

let fmt d u = lift(sprintf "%.1f%s" (sz/.d) u) ?>

<?match arg "unit" with
| Some "M" → puts .~(fmt 1048576. "M")

| Some "k" → puts .~(fmt 1024. "k")

| → puts .~(fmt 1. "") ?>

Now, all that remains to execute at serve time is to check the dynamic unit
argument and spit out one of three pre-generated strings. The generated code
block looks something like this (substantially cleaned up from the MetaOCaml
pretty-printer, with references to persistent values resolved in-place):

.< fun req puts → let arg = Request.arg req in
(match (arg "unit") with
| Some ("M") → (puts "0.0M")

| Some ("k") → (puts "2.4k")

| → (puts "2458.0"))>.

To handle more complex situations, code blocks may be constructed condi-
tionally and recursively. Here is an example that prints a count-down, but
removes the loop overhead by expanding to a sequence of 99 puts statements.

<?^open Printf

let rec count puts i =

if i = 0 then .< ()>.

else .< (.~puts .~(lift(sprintf "%d<br>" i));

.~(count puts (i−1)))>.

?>

<? .~(count .< puts>. 99) ?>

The brackets around the puts on the last line are necessary, because count
splices the puts call into the code it generates. Omitting the brackets would
result in a compile-time type error.

These tiny examples suggest the ease with which the ‘boundary’ between the
stages can be adjusted, just by tweaking the staging annotations. Moreover,
the static typing of MetaOCaml ensures in advance that our programs generate
type-correct code only. The examples also illustrate some of the common uses
of the escape operator, for which we developed syntactic sugar. The first set
of code blocks we define use the tilde character to indicate that some part of
the enclosed code is escaped:
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<?~ a ?> ; <? .~( a ) ?>

<?~= b ?> ; <?= .~( b ) ?>

<?~ let x = c ?> ; <? let x = .~( c ) ?>

<?~ "fmt" d, e, f ?> ; <? "fmt" .~(d), .~(e), .~(f) ?>

where the a has type unit code; b has type string code; and the types of d,e,f
match the format string.

It is also common to use the escape with lift; this means we are computing a
value immediately and splicing it into the code. For these blocks, we use the
! character:

<?! a ?> ; <? .~(lift( a )) ?>

<?!= b ?> ; <?= .~(lift( b )) ?>

<?! let x = c ?> ; <? let x = .~(lift( c )) ?>

<?! "fmt" d, e ?> ; <? "fmt" .~(lift(d)), .~(lift(e)) ?>

In these cases, the expressions should not have code types: a simply has type
unit, b has type string, etc. This is the only difference between the ˜ and !
variants; both are evaluated in the first stage. We will see examples of most
of these blocks in section 3 and appendix A.

2.4 Publish-stage arguments

MetaOCaml server pages support publish-stage arguments, as demonstrated
by the identifiers a b c in figures 2 and 3. The programmer specifies the pat-
tern to be used with a <? pragma args ... ?> declaration, which may appear
anywhere in the code. Any identifiers following args in the pragma declaration
will become publish-stage parameters.

With publish-stage parameters, the page may be instantiated in countless
ways. Continuing the count-down example, we could map the URI /longcount
to a code block generated with an argument of 99, while /shortcount refers
to code with the argument 9. Both are generated from the same server page.

<? pragma args n ?>
<?^open Printf

let rec count puts i = if i = 0 then .< ()>.
else .< (.~puts .~(lift(sprintf "%d<br>" i));

.~(count puts (i−1)))>. ?>
<?~ count .< puts>. n ?>
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val preamble: string → string
(* Generate a standard HTML header, including a title block

3 composed from the given string. *)
val navbar: string → string

(* Generate the navigation bar, given a URI denoting
6 the current page. *)

val postamble: string
(* The page footer. *)

Fig. 4. These functions help define the standard site layout.

Fig. 5. Web browser displaying the result of 7127.

Mapping from URIs to instantiated MetaOCaml code is, for now, left as an
implementation detail (see section 4).

3 Examples

To explore the expressiveness of this design, we now look at a series of web
services, organized to comprise a small web site. To give the services a similar
look, we developed a site-wide style sheet, and an OCaml function to generate
a navigation bar from a hierarchical list of page titles and links. The page
layout functions in figure 4 may be invoked at any stage. Naturally, if the
page title includes a dynamic argument, then preamble will have to be delayed
until the serve stage.
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<?^open Num (* for arbitrary-precision arithmetic *)
let width = 54

3 let rec wrap puts s = (* wrap s into a fixed-width block *)
if String.length s ≤ width then puts s else

(puts (Str.string before s width); puts "\n";
6 wrap puts (Str.string after s width))

let is zero = eq num (Int 0)
let square x = .< let z = .~x in z */ z>.

9 let rec power n x = (* staged power function *)
if is zero n then .< Int 1>. else
if is zero (mod num n (Int 2)) then square(power (n//Int 2) x)

12 else .< .~x */ .~(power (n −/ Int 1) x)>. ?>
<? pragma args y ?>

<?! let y’ = string of num y ?>

15 <? let x’ = match (arg "x") with Some v → v | None → "2" ?>

<?= preamble(x’^"^"^y’) (* Output begins here *) ?>

<?!= navbar("/power"^string of num y) ?>

18 <form method=’get’> This page computes
<input name=’x’ type=’text’ value=’<?= x’ ?>’ size=’20’/>
<sup><?= y’ ?></sup> </form>

21 <?~ let result = power y .< num of string x’>. ?>
<p>The result is:
<pre><?wrap puts (string of num result) ?></pre></p>

24 <?= postamble ?>

Fig. 6. power.meta. The staged power function as illustrated in figure 5.

3.1 The ubiquitous power function

Judging from its prevalence in the multi-stage programming literature, we
are certain that millions of grateful users would subscribe to an online service
capable of computing the power function. The screen shot in figure 5 illustrates
how it works. The navigation bar shows the exponents for which code has been
pre-generated. 9 After selecting the exponent, the user types the base into the
form and presses return. The result is computed using the arbitrary-precision
Num module of the OCaml library. The complete script appears in figure 6.

The user’s input is converted to a number relatively late in the script (line
21). If num of string generates an exception (perhaps because the user typed
non-numeric text into the box), the navigation bar and form will have already
been output before the error message appears.

9 In the current implementation, it is not possible for the user to request other
exponents once the server is running. See section 4 for an explanation.

12



In section 5, we will measure the impact of staging on the scalability of this
application. To derive the un-staged version for comparison, we simply replace
<?~ and <?! blocks with plain <? and remove all other brackets and escapes
from the code in figure 6.

3.2 Directory browsing

Now we consider a more substantial example. Many web servers can be con-
figured to permit clients to browse directories. The web server generates, on
the fly, an HTML page containing the names and attributes of (and hyper-
links to) all the files in whatever directory is specified by the URL. In Apache,
the mod autoindex module provides this feature. ViewCVS is a more complex
example of the same idea; it allows remote users to browse a CVS repository
with a standard web browser.

This kind of service can be fairly resource intensive; each HTTP request is
likely to generate dozens of system calls and disk accesses. If the directory is
viewed more often than it is changed, then it makes sense to cache or pre-
generate the pages. Although it is simple enough to write a script to generate
static directory pages off-line, what if we also want dynamic behavior, such as
user-controlled sorting and filtering?

Our implementation not only lists files in a given directory, but displays their
MD5 checksums, renders their sizes in human-readable form (‘1.2M’ rather
than ‘1194822’), and colors their names based on their extension or file type.
We also support dynamic (serve time) customization: the user may specify a
regular expression for filtering, and select one of 5 criteria for sorting. The
screen shot in figure 7 shows the result of browsing the source directory of the
server itself.

This service is a bit like the conference calendar proposed in section 1. We pre-
generate everything that does not rely on serve-time parameters. The stats and
MD5 sums of the files are collected once, in the publish stage. The text of each
possible row is prepared in advance. Once the user’s request is made, we filter
and sort the list, then output the pre-generated text of each remaining row.
The files need not be opened or even stat(2)ed while the user is waiting.
Appendix A contains the complete script, with documentation.

Much of the code is unaffected by staging; helper functions (that sort according
to the selected criterion, format the human-readable sizes, and collect the file
information) are oblivious to the stage in which they are run. Therefore, the
staged code comprises a relatively small portion of the entire program: mainly
the function list files and its call site.
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Fig. 7. Browsing the server source code directory.

To understand the staging technique, it may help to examine the output of just
the first stage of computation. The code block in figure 8 is cleaned up from
the MetaOCaml pretty-printer, with references to compiled values substituted
in-place. The list is formed by testing filenames (in reverse alphabetical order)
against the compiled regular expression rc, prepending only those that match.
The file info record for each file has already been prepared and appears in the
code as a value.

Because the file information is compiled into the code, any changes to the
file system following the first stage of execution will not automatically appear
on the web interface. To see the latest files, we need to re-run stage one.
This cannot be done from within the MetaOCaml server page itself, but we
have programmed the server to regenerate pages whenever the ‘!’ character
is appended to the URI. The directory browser pages feature a ‘Regenerate’
button at the bottom which will bring them up to date by running the publish
stage code again, and caching the result for subsequent requests.

3.3 Server introspection

Some web servers can be configured to display their status in response to
certain URIs (such as /server-status on Apache). We programmed a few
status services in MetaOCaml. The screen shot in figure 9 displays garbage
collection statistics from the OCaml GC module. The only thing pre-generated
here is the navigation bar.
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.< fun req puts →
let arg = Request.arg req in

3 puts "<html>\n<head>\n<title>MetaOCaml. . .";
let (re,rc) = match arg "re" with

None → default re | Some r → (r, Str.regexp r)
6 let list =

try ignore(Str.search forward rc "timeStamp.mli" 0);
[{name="timeStamp.mli", prn=". . .", . . .}]

9 with Not found → [ ] in
let list =

try ignore(Str.search forward rc "timeStamp.ml" 0);
12 {name="timeStamp.ml", prn=". . .", . . .} :: list

with Not found → list in
let list =

15 try ignore(Str.search forward rc "timeStamp.cmo" 0);
{name="timeStamp.cmo", prn=". . .", . . .} :: list

with Not found → list in
18 : (* and so on, for the rest of the files. *)

let ord = match arg "ord" with
None → "name" | Some o → o in

21 let list = sort by ord list
puts "<form method=’get’ . . .";
: (* etc. *)

24 >.

Fig. 8. Generated code for directory browser; see also appendix A.

4 Implementation

The implementation consists of two parts: a translator and a web server. The
translator transforms the server page syntax into plain MetaOCaml, as illus-
trated in figure 3. It recognizes all the server page blocks defined in section 2
but does not completely parse the MetaOCaml code contained within them.
Instead, it recognizes just enough of the keywords and delimiters to decide
whether to add semi-colons or ‘in’ after each block. This approach makes the
translator fairly robust to minor changes in OCaml syntax.

The disadvantage of this method is that very few syntax errors (and no type
errors) are detected by the translator itself. So, errors reported by MetaOCaml
are displayed in terms of the translated program, not the source program.

The server component is much more complex. We implemented the essential
parts of the HTTP/1.1 specification as a multi-threaded OCaml program.
Upon receiving a request for some URI, the server uses a chain of responsibil-
ity [7] to determine how to handle it. The chain is specified as a parameter to
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Fig. 9. Garbage collector statistics, from the OCaml gc module.

the server. Two primary handlers are provided: FileHandler and CodeHandler.

The FileHandler takes a file system path as a parameter, and then interprets
each URI as a file name relative to that path. If such a file exists, it sends
it verbatim to the client. If not, it passes the responsibility on to the next
handler in the chain.

The CodeHandler is provided with a dictionary to map URIs to code values.
It looks up the URI in the dictionary, and if a match is found it invokes that
code. For now, the map is hard-coded at build time and the code values are
already in memory when the server starts accepting requests. This is because
MetaOCaml does not currently permit programs to read and write code values
to a file.

Here are the types of the page code and the map, along with the signature for
the CodeHandler:

type page = Request.req → (string → unit) → unit

type map = ((unit → page) * page ref) StringMap.t

val run : map → Server.handler
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page is the type of the code that is constructed by each server page; recall
that the page takes two serve-time parameters: one encapsulating the HTTP
request, the other is the puts function for sending text back to the client.

Data structures of type map tell the server which pages are mapped to which
URIs. The range of the map is a pair: the first component (of type unit→page)
is a function that will re-run stage one computation (using the .! operator
internally); the second component (of type page ref) is a cell where the latest
page is cached.

The unit→page formulation is a work-around for what might otherwise be
expressed as page code, and run from within the CodeHandler. Unfortunately,
code values in MetaOCaml must remain polymorphic to run them; the type is
actually (’a, page) code, for all ’a. This is traditionally problematic in ML: we
can define a polymorphic data structure, but not a data structure containing
polymorphic values. The work-around we used captures the polymorphic code
value in a closure, which is then added to the map. Another possibility is to
use the limited form of explicit polymorphism supported in OCaml, with the
syntax {f : ’a. (’a, page) code}. 10 To use code values more directly, we would
need rank-2 polymorphism; work by Garrigue and Rémy [8] is headed in that
direction.

5 Performance

In this section, we describe the performance characteristics of the prototype,
focusing in particular on the benefits of staging various web services. The single
most important metric for evaluating web server performance is throughput:
the number of requests successfully answered per unit of time. To establish a
baseline, we first tested the throughput of our custom OCaml HTTP server
delivering chunks of static data of various sizes, up to 64k bytes. Measurements
were taken on an otherwise idle 1.8GHz Intel Xeon workstation 11 running
Linux 2.6. We used ab, the Apache HTTP server benchmarking tool, to issue
requests from 8 threads simultaneously for 30 seconds. 12

The baseline results are shown in figure 10. In the “OCaml FileHandler” series,
the files were treated just as static files, opened on disk, and copied out to
the socket. There are two sets of results for the FileHandler: one compiled as
native code, and the other compiled as byte code. A native code compiler for
MetaOCaml is not yet available. Therefore, most comparisons in this section

10 Thanks to an anonymous reviewer for pointing this out.
11 with 512kB cache, 768MB RAM, and Ultra160 SCSI
12 invoked like this: ab -k -t 30 -c 8 url
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Fig. 10. Throughput for static pages. Note the logarithmic scale on the x axis.

will rely on byte code. The native code results we are able to obtain at this
time suggest how much improvement we can expect once native code is an
option.

For the “MetaOCaml CodeHandler” series, the same set of files were treated
as MetaOCaml Server Pages, and thus translated (in advance) into one big
puts statement, to be executed (as byte code) by the CodeHandler module.
The only reason the code beats the (byte code) FileHandler in the beginning is
that all code pages are already loaded into the server’s memory on startup (to
work around a limitation of the prototype—see section 4), but the FileHandler
must read files from disk each time.

Figure 10 includes comparable results for PHP, the popular server-side com-
putation system. 13 Here, we gave the same static data files the extension
.php, so that Apache would treat them as PHP code, even though they have
no <? code blocks ?>. We omitted the results for Apache serving static files,
because they are way off scale: Apache handled an astounding 4,438 hits per
second for the 1k file, and 1,813 for the 64k file. Apache is heavily optimized
for serving static files: apart from caching, it uses the special sendfile(2)
system call for zero-copy file transfer from kernel space [21]. Although our
prototype is no match for Apache on static files, the overhead for interpreting
code seems no worse than that of PHP.

13 libphp4.so (version 4.3.10) loaded into Apache 1.3
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let rec power n =
if is zero n then fun x → Int 1

3 else if is zero (mod num n (Int 2))
then let f = power (n // (Int 2)) in fun x → square (f x)
else let g = power (n −/ (Int 1)) in fun x → x */ (g x)

Fig. 12. Staging the power function using higher-order functions.

Using the same methodology, we now consider the performance of the staged
and unstaged power functions; see figure 11. Since we are comparing staged vs.
unstaged (and not native vs. byte code), these results need to be interpreted
in two distinct groups. The top two lines are native code, while the bottom
three lines are byte code. Start with the byte code.

The throughput for the pages staged with MetaOCaml is about 30% higher
than the unstaged version in the beginning, but as the exponents increase
(again, note the log scale in the graph) the gap narrows. In this program, stag-
ing removes the loop overhead, but the cost of the multiplications and conver-
sion to a decimal string (which involves non-trivial divisions) are needed either
way. Eventually, the cost of those operations dominates everything else. 14

At the suggestion of an anonymous reviewer, we also tried staging using higher-
order functions in OCaml instead of the code splicing features of MetaOCaml.
The relevant fragment of code is shown in figure 12. It recursively builds up a

14 The final result, 28191 has 2,466 digits in base 10.
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Fig. 13. Staged versus unstaged directory browsing, in MetaOCaml and PHP.

closure that represents the computation required to compute any number to
the power n.

As one might expect, staging using higher-order functions is slightly worse
than producing specialized code as in MetaOCaml, but better, of course, than
no staging at all. Moreover, this version compiles easily to native code with
the standard OCaml tools, and this improves its performance significantly. We
do have reason to hope, however, that the native MetaOCaml version, once
working, will ultimately perform the best.

Finally, we look at the performance of staged and unstaged directory browsing;
see figures 13 and 14. Here, we created directories containing fixed numbers
of files with random data. The average file size was 32k. The x axis shows the
number of files in each directory.

Besides the staging factor, two implementation languages are compared: we
implemented the same functionality in PHP. The ‘staged PHP’ version must
be run first from the command line; this outputs a PHP script which is then
run by the server. With PHP we must, as noted in section 1, manage the
quoting and persistence by hand. (This program is the source of the horrible
serialize/unserialize code shown on page 4.)

Directory browsing was the most realistic of the examples, and the benefit of
staging is crystal clear. In browsing a directory of 64 files, the unstaged pro-
grams barely answered 18 requests per second. They would certainly succumb
to the Slashdot effect—and compilation to native code made essentially no
difference.
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Fig. 14. Directory browsing staged with higher-order functions vs. MetaOCaml.

This is exactly the kind of page where the real work needs to be done in
advance. But that does not mean it needs to be a completely static page,
either. By carefully staging the computation, we gathered the file information
in advance, yet still filtered and sorted the results on demand. The staged
MetaOCaml directory browser answered more than 550 requests (for the same
64-file directory) per second.

The degradation in performance of the staged PHP version is most likely due
to the fact that the stage two script must be parsed on each request; the
size of the script is proportional to the number of files in the directory. With
MetaOCaml, the code size is also proportional to the number of files, but the
values are byte-compiled (and already in memory). At any rate, our goal is
not to beat PHP on performance, but rather to gain the performance benefit
of staging without the awkwardness of staging in a language (like PHP) that
does not support it.

We also tried staging the directory service using higher-order functions, the
same technique as described for the power function. Again, this did not quite
match the performance of the MetaOCaml version (when comparing byte-
code to byte-code). However, in figure 14, we can also see the substantial
difference that compilation to native code can make. We expect that the native
MetaOCaml compiler will enable even better throughput.
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6 Related and future work

Most of the server page systems embed programs within web pages using sim-
ilar techniques; examples include JSP, ASP, PHP, MSP [5] (based on SML),
and AS/XCaml (based on OCaml). 15 Ours appears to be the first such lan-
guage with explicit support for staging the computation. We inherited the
staging annotations of MetaOCaml [1] and designed several new kinds of code
blocks based on them.

There is much related work on using various features of modern programming
languages to implement sophisticated web services. Nørmark [15] proposed
writing web pages in Scheme using the Lisp Abstracted Markup Language
(LAML), which essentially represents HTML documents as S-expressions. He
distinguished three different binding times, when the Scheme program could
be evaluated: off-line, page access time, or browse time (client-side). These
correspond precisely to the three stages we identified in section 1, but his
programs did not transcend different stages. It is possible to implement staged
programming in Scheme using quasiquote, unquote, and eval [3]; this would
lead to a similar capability, save for the difference between static and dynamic
checking of the generated code.

Takebe and Yuasa [20] developed a partial evaluation technique for PHP. Their
tool, PHP-Mix, reads standard PHP source code and performs binding time
analysis. Then, it generates a semi-static script as output. It understands a
significant subset of the PHP function library, including the database connec-
tivity. Unfortunately, some properties of PHP—such as the lack of variable
declarations and the single global scope—cause the analysis to be overly con-
servative, so it does not always achieve the optimizations we desire.

Queinnec [16] and Hughes [13] observed that multi-page web services could be
implemented more naturally using continuations and call/cc (essentially, by
treating the server and user as coroutines). This way, we can treat the entire
service as one program—that suspends itself while waiting for user input—
instead of developing each page as a separate program. This is a valuable
technique, and appears to be orthogonal to staging; although it would be worth
implementing both together to determine if there are unforeseen interactions.

Graunke et al. [9, 10] took up this idea and mixed it with other language
features: first-class modules, preemptive threads, and custodians, for managing
resource consumption. The result is a server that achieves lower overhead for
dynamic services compared to Apache CGI (although the overhead of CGI is
avoided by most modern dynamic services, by embedding interpreters for JSP,
PHP, or similar in the server). Matthews et al. [14] compile such direct-style

15 Application System Xcaml, by Alessandro Baretta. http://www.asxcaml.org/
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interactive programs into CGI-style scripts.

Unlike more ad-hoc staging methods, MetaOCaml server pages guarantee the
type safety for generated code up front. We do not, however, make any guar-
antees about the validity of the generated HTML. Elsman and Larsen [6],
Wallace and Runciman [23], Hosoya and Pierce [12], and Ohl 16 leverage ML-
like type systems to validate (X)HTML generators. Integrating their ideas into
MetaOCaml server pages may permit validation of the generated document
as well.

Our server page language is defined by translation into MetaOCaml. Unfor-
tunately, this means that error messages refer to the translated code, not the
original, embedded code. Camlp4 is a flexible pre-processor capable of modify-
ing the concrete syntax of OCaml while maintaining usable error messages. 17

Formulating the server page syntax with Camlp4 would likely be an improve-
ment over the current, ad-hoc translator.

In motivating MetaOCaml server pages, we observed that the computation
associated with a web page naturally decomposed into three stages: publish,
serve, and display. Our language, however, was designed to support just the
first two stages. It is straightforward to imagine an extension to the third stage
(since MetaOCaml itself has no constraints on the number of stages) but the
implementation may be tricky. First, we must overcome the process boundary
between server and client. We currently have no way to export MetaOCaml
code blocks from the program that created them into another program. (On
the server, we circumvented this limitation by running the publish and serve
stages within one process.) Next, we need a browser capable of loading and ex-
ecuting MetaOCaml code. Rouaix [17] demonstrated a browser called MMM,
written in Caml, that could run applets loaded as Caml byte-code. It may
be possible to update his browser for use with MetaOCaml, but developing a
plug-in that works with conventional browsers would be preferable.

One of the major shortcomings of our implementation is that all the pages
must be loaded into memory when the server starts. Ideally, a separate tool
would translate the server page source directly to byte-code, stored in an image
on disk. Then the server would map URIs to these byte-code files, loading and
executing them on demand. Whenever we want to re-run the publish stage,
we could do so independently of the server.

Another interesting avenue is to incorporate work on offshoring [4]. An alter-
native run construct translates generated code blocks to lower-level languages
for improved performance. In the domain of web services, it is conceivable
that a MetaOCaml server page could then generate (via offshoring) a special-

16 XHTML module. http://theorie.physik.uni-wuerzburg.de/∼ohl/xhtml/
17 Camlp4, by Daniel de Rauglaudre. http://pauillac.inria.fr/caml/camlp4/
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ized server page in a more mainstream language, such as PHP, JSP, or—for
client-side computation—JavaScript.

More substantial applications are needed to demonstrate both the perfor-
mance gains and the expressiveness of this approach. A web service that uses
a database and is spread over several pages would be more realistic. Quein-
nec [16] and Graunke et al. [9] use features of functional languages to express
user interactions more naturally, given the stateless nature of HTTP. We be-
lieve that these techniques are orthogonal to the staging features provided by
MetaOCaml.

Finally, although our HTTP implementation stands up to the Apache bench-
marking tool, it is not likely to win any awards for reliability or flexibility. Our
ideas would likely have greater impact if they were implemented as a module
for a real server such as Apache or AOLserver. Beyond the concerns outlined
earlier in this section, this is likely to be ‘just’ an engineering effort.

7 Conclusion

Web publishing is an important application domain that is naturally staged.
Web programmers write staged programs, but they do it the old-fashioned
way: one script outputs another as a string. This is a tremendous opportunity
for multi-stage languages.

We presented the design of MetaOCaml server pages, a new domain-specific
language for web applications programming. It leverages the staging annota-
tions of MetaOCaml to provide safe and precise control over the each stage of
the computation. We have shown the substantial benefits of this approach in
terms of performance and expressiveness, although the prototype implementa-
tion suffers some limitations because it is unable to read and write generated
code to a file.
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A The directory browser

<? pragma args uri d ?>

The script takes two publish-stage arguments: uri is the server path of the
generated page, and d is the filesystem path of the directory to browse.

<?^open Printf open Unix ?>

We assemble the page title and navigation bar in the publish stage. These are
then propagated as a string to be printed in the serve stage.

<?!= preamble("browsing "^d) ^ navbar uri ?>

The default regular expression is compiled in advance, but superseded if the
re argument is provided in the HTTP request.

<?^ let default re = let r = "^[^\\.].*[^~]$" in (r, Str.regexp r) ?>

<? let (re,rc) = match arg "re" with

None → default re | Some r → (r, Str.regexp r) ?>

<?~ let list = list files d .< rc>. ?>

The above call to list files occurs in the first stage, but it produces code to be
executed in the second stage. The first stage stats all the files and computes
MD5 sums. The next stage filters according to the regular expression, passed
to list files as code. The function list files appears later in this script.

<? let ord = match arg "ord" with

None → "name" (* default *) | Some o → o in
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let list = sort by ord list in ?>

Sorting occurs entirely in the second stage. The function sort by is also defined
later in this script.

<form method=’get’ action=’’>

<input type=’submit’ value=’Redisplay’ /> files matching

<input type=’text’ name=’re’ size=’14’ value=’<?= re ?>’ />

ordered by <select name=’ord’>

<?~ ord options .< puts>. .< ord>.

["name", "Name"; "ext", "Extension";

"time", "Timestamp"; "size", "Size";

"kind", "Kind"] ?> </select></form>

ord options (defined later) generates the option tags for the drop-down menu.

<pre>

<?= header (* column heads *) ?>

<? List.iter (fun f→puts f.prn) list ?>

</pre>

<form method=’post’ action=’<?= uri ?>!’>

<input type=’submit’ value=’Regenerate’ /></form>

<?= postamble (* page ends *) ?>

Recall: declaration blocks (like the one below) are lifted up before any of the
page code; that is why we seem to use functions like list files before defining
them.

<?^ type fileinfo = { name: string; ext: string; kind: string;

mtime: float; size: int; md5: string; prn: string } ?>

The list we intend to build includes not only file names, but all the file data
and even the printed representation, all of it prepared in advance. The various
sort orders use different fields of the above record type.

<?^ let cex f1 f2 = compare f1.ext f2.ext

let ck f1 f2 = compare f1.kind f2.kind

let cmt f1 f2 = compare f1.mtime f2.mtime

let csz f1 f2 = compare f1.size f2.size

let sort by order list = match order with

| "ext" → List.stable sort cex list | "kind" → List.stable sort ck list

| "time" → List.stable sort cmt list | "size" → List.stable sort csz list

| → list ?>

The following format string is used to generate the printable representation of
each entry. The column headings are defined similarly.

<?^ let entry fmt = format of string

"<span class=’md5’>%−32s</span> %−13s %5s <a class=’file’ \
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href=’%s’><span class=’%s’>%s</span></a>%s\n"

let header = sprintf

"<b>%−32s %−13s %−5s %s</b>\n"

"checksum" "last modified" "size" "name" ?>

Generate ‘human-readable’ sizes:

<?^ let human size n =

if n < 1024 then sprintf "%4d " n

else if n < 102400 then sprintf "%4.1fk" (float of int n/.1024.)
else if n < 1024000 then sprintf "%4dk" (n/1024)

else if n < 104857600 then sprintf "%4.1fM" (float of int n/.1048576.)
else sprintf "%4dM" (n/1048576) ?>

Generate kind and symbol (like ‘–F’ option of ls) from filename extension
and/or file permissions.

<?^ let reg kinds ext perm =

let k = match ext with

| "a"→"lib" | "cma"→"lib" | "cmi"→"obj" | "cmo"→"obj"

| "ml"→"src" | "sml"→"src" | "mli"→"hdr" | "sig"→"hdr"

| →"" in

let i = if perm land 0o111 = 0 then "" else "*" in

match (k,i) with

| ("", "*") → ("exe", "*") | other → other ?>

Gather all the info for file f in directory d.

<?^ let fileinfo d f =

let path = Filename.concat d f in

let st = stat path in

let md5 = if st.st kind = S REG

then Digest.to hex(Digest.file path) else "" in

let ext = try let i = String.rindex f ’.’ + 1 in Str.string after f i

with Not found → "" in

let (kind, indicator) = match st.st kind with

| S DIR→("dir", "/") | S FIFO→("fifo", "|")

| S BLK→("bdev", "") | S CHR→("cdev", "")

| S LNK→("link", "@") | S SOCK→("sock", "=")

| S REG→reg kinds ext st.st perm

in let prn = sprintf entry fmt md5 (TimeStamp.brief st.st mtime)

(human size st.st size) f kind f indicator

in {name=f; ext=ext; kind=kind; md5=md5; mtime=st.st mtime;

size=st.st size; prn=prn} ?>

List filenames, in reverse alphabetical order:

<?^ let rc x y = − (compare x y)
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let rec read all dh files = try read all dh (readdir dh :: files)

with End of file → closedir dh; List.sort rc files ?>

Walk through all the files and gather their information, then generate code to
filter based on filename.

<?^ let list files d re =

let rec loop term files = match files with [ ] → term

| name::files →
.< let list = try ignore(Str.search forward .~re name 0);

.~(lift(fileinfo d name)) :: .~term

with Not found → .~term

in .~(loop .< list>. files)>.

in loop .< [ ]>. (read all (opendir d) [ ]) ?>

Generate code to print the option tags, adding the selected attribute as appro-
priate.

<?^ let rec ord options puts ord opts =

match opts with [ ] → .< ()>. | (tag,text)::opts →
.< (kprintf .~puts "<option %s value=’%s’>%s</option>\n"

(if .~ord = tag then "selected" else "") tag text;

.~(ord options puts ord opts))>.

(* End of ‘dir.meta’ *)

?>
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