Something for everyone:

A.I. lab assignments that span learning styles and aptitudes

Christopher League CCSC/NE 12 April 2008

Something for everyone:

wide range of educational backgrounds, learning styles, aptitudes, and time/energy constraints

Cos O= Pf

"the goal of every university teacher should be to realize the potential of each student"

— Lister & Leaney

Bloom, Taxonomy of educational objectives, 1956

Bloom, Taxonomy of educational objectives, 1956

Synthesis arrange · compile · compose · create · devise

design \cdot extend \cdot generate \cdot modify \cdot plan \cdot write

compare · contrast · deconstruct · differentiate distinguish · illustrate · infer · relate · separate

Application charge · compute · demonstrate · discover

operate \cdot predict \cdot prepare \cdot show \cdot solve \cdot use

Comprehension convert · estimate · explain · generalize · exemplify infer · interpret · paraphrase · summarize · translate

define · describe · identify · bel · list · match · name outline · recall · recognize · reproduce · state

"IT academics place premature emphasis on the higher levels of the taxonomy" — Lister & Leaney

Common LISPcraft

by Robert Wilensky

by Robert Wilensky

"Implement a constraint solver...

Common LISPcraft

by Robert Wilensky

by Robert Wilensky

due on Tuesday"

Evaluation Synthesis Analysis Application Comprehension Knowledge

Workbook-style lab assignments that interleave lecture notes and software demos with a series of questions, tasks, and projects at multiple levels of Bloom's taxonomy

Topic Outline

Topic Outline

- 1. **Philosophical background,** strong vs. weak AI, Turing test, chat-bots
- 2. Machine learning by example: classification problems, decision trees, entropy, ID3
- 3. Machine learning by evolution: optimization problems and genetic algorithms
- Planning using uninformed and heuristic search: breadth-first, depth-first, and A* algorithm
- 5. **Constraint propagation** and satisfaction with AC3
- 6. Adversarial search with minimax & heuristics
- 7. Knowledge representation, logic, expert systems, common sense

Dr Scheme

- Mark all the squares from which your robot should move north.
 - What features distinguish those squares from all the others?

Synthesis

Compose and test your own robot controller

detin	e roon	n – T	
' (''			xxx"
11	XXXXX	XX	11
11	XX X	XX	11
11	XX X	XX	11
11			xxx"
11			xxx"
11	XX	XX	xxx"
11	XX	XX	xxx"))

Evaluation

What are some limitations of a stateless stimulus/response system?

Evaluation

What are some limitations of a stateless stimulus/response system?

Constraint satisfaction

Constraint satisfaction

- 1. C's card has higher rank than B's card
- 2. The **sum** of **C's** card with **D's** card is more than 8

9

9

9

4

- 3. **B's** card is a **black** suit (clubs or spades)
- 4. E's card is not clubs

6 J K

* 00

*00

.6

*0

* >

5. A's card is not the same suit as C's card

KnowledgeComprehension

- Identify the unary constraints
- Identify the binary constraints

- Apply the unary constraints to the hand you were dealt
- Draw a graph showing the binary relationships

How many arcs are in the graph?

• When your hand changes, which arcs are added to the work list?

Synthesis

Same process for 8-queens, but we follow through to implementation

Topic Outline

Topic Outline

- 1. **Philosophical background,** strong vs. weak AI, Turing test, chat-bots
- 2. Machine learning by example: classification problems, decision trees, entropy, ID3
- 3. Machine learning by evolution: optimization problems and genetic algorithms
- Planning using uninformed and heuristic search: breadth-first, depth-first, and A* algorithm
- 5. **Constraint propagation** and satisfaction with AC3
- 6. Adversarial search with minimax & heuristics
- 7. Knowledge representation, logic, expert systems, common sense

Connect 4

Results: seems to work, more students submitting than usual

Start with working software

 'Lower' cognitive exercises explicitly part of assignment (for credit)

Lab work time during class hours

define (cl-rowscore b r) (+ (cl-cortz-from b 0 r) (cl-cortz-from b 1 r) (cl-horiz-from b 3 r))) (define (cl-horizontal-quad-score)	Chun #2 vs. John #2	-
Welcome to <u>DrScheme</u> , version 352. Language: Graphical (MrEd, includes MrScheme) outon. $\mathcal{K}(\theta) \mathcal{K}(\theta) \mathcal{K}(\theta)$); arguments were: θ	given: \$7(\$6(1 2 8) \$6(8) \$6(8) \$6(8) \$6(8) 2	

http://contrapunctus.net/sail/

JAIL									[Search
Artificial Intelligence Lab Workbook						logged in	as league	Logo	ut Prefer	ences	Help/Guide	About Trac
	Wiki	Timeline	Ro	admap	Browse	e Source	View T	ickets	New Ti	icket	Search	Admin
root / trunk							Visit:				ast Change View revi	Revision Log
Name 🔺		Si	ize	Rev	Age	Last Chan	ge					
° ∟ /												
ac3algo.scm			7.4 kB	4	10 minutes	league: co	py code	from Fa	all 2007 ta	g into	trunk, as s	tarting point
adventure.scm			7.0 kB	4	10 minutes	league: co	py code	from Fa	all 2007 ta	g into	trunk, as s	tarting point
connect4-brain.scm			9.2 kB	4	10 minutes	league: co	py code	from Fa	all 2007 ta	g into	trunk, as s	tarting point
connect4-model.scm			6.6 kB	4	10 minutes	league: co	py code	from Fa	all 2007 ta	g into	trunk, as s	tarting point
connect4-view.scm			5.3 kB	4	10 minutes	league: co	py code	from Fa	all 2007 ta	g into	trunk, as s	tarting point
connect4.scm			9.7 kB	4	10 minutes	league: co	py code	from Fa	all 2007 ta	g into	trunk, as s	tarting point
gene-algo.scm			5.1 kB	4	10 minutes	league: co	py code	from Fa	all 2007 ta	g into	trunk, as s	tarting point
gene-bot.scm			2.0 kB	4	10 minutes	league: co	py code	from Fa	all 2007 ta	g into	trunk, as s	tarting point
gene-knapsack.scm			2.1 kB	4	10 minutes	league: co	py code	from Fa	all 2007 ta	g into	trunk, as s	tarting point
gene-prog.scm			6.7 kB	4	10 minutes	league: co	py code	from Fa	all 2007 ta	g into	trunk, as s	tarting point
gene-tree.scm			4.0 kB	4	10 minutes	league: co	py code	from Fa	all 2007 ta	g into	trunk, as s	tarting point
gene-vec.scm			1.5 kB	4	10 minutes	league: co	py code	from Fa	all 2007 ta	g into	trunk, as s	tarting point
🗎 grid-main.scm		12	2 bytes	4	10 minutes	league: co	py code	from Fa	all 2007 ta	g into	trunk, as s	tarting point
grid-model.scm			8.5 kB	4	10 minutes	league: co	py code	from Fa	all 2007 ta	g into	trunk, as s	tarting point

http://contrapunctus.net/sail/

Christopher League

CCSC/NE 12 April 2008

