
On the construction of
convergent transfer subgraphs
in general labeled directed
graphs

Christopher League*

Mohammed Ghriga
38th CGTC

7 March 2007

First, I’ll explain what we mean by “Convergent Transfer Subgraphs.” This is a technique
from Protocol Conformance Testing…

Protocol conformance testing

implementation specification

?

…where we try to validate an implementation against a specification. We do black box
testing: provide inputs to the implementation and observe its outputs, but don’t look at the
code. The specification…

Specification ≈ non-deterministic
finite state transducer (automaton)

0

6

32

7

4

8

5

1

a:
y b:z

b:
z b:y

a:y

a:x a:
z

b:z

a:y

b:
x b:y

a:z

b:
z

a:y
b:z

• Each transition labeled
with accepted input &
expected output

• States of implementation are not observable,
just stimuli & responses

…is normally represented as a Non-Deterministic Finite State Transducer, or automaton.
It can be generated from specifications written in some formal language, like LOTOS or
Estelle. ¶ Each transition is labeled with an accepted input and expected output. The states
of the implementation are not directly observable. Some notation…

Specification ≈ non-deterministic
finite state transducer (automaton)

0

6

32

7

4

8

5

1

a:
y b:z

b:
z b:y

a:y

a:x a:
z

b:z

a:y

b:
x b:y

a:z

b:
z

a:y
b:zgraphG = (V , E)

input, output alphabets L, L′
edge set E ⊆ V × L× L′ × V
set of input symbols on outgoing edges:

outG(v) = {a | (v,a,_,_) ∈ E}
set of outgoing edges for a given input:
EG(v,a) = {e ∈ E | e = (v,a,_,_)}
d−G(v,a) = |EG(v,a)|

The graph consists of a set of vertices, and a set of edges. L and L’ are sets of input and
output symbols. So each edge is specified as a source vertex, input symbol, output symbol,
and destination. ¶ Given a vertex v, the notation out(v) indicates the set of input symbols on
outgoing edges. Example: out(3)={a,b}; out(5)={b}; out(7)={a}. ¶ For a vertex v and input
symbol a, E(v,a) is the set of outgoing edges for a given input; and d- is the size of that set.
¶ So, non-determinism is present when d-(v,a) > 1 for some v,a.

Non-deterministic spec
means testing must be adaptive

• With deterministic state machine,
preset test cases can be derived in advance

• But many protocols are non-deterministic,

• So stimuli provided to machine may depend on
its previous responses

Now, testing basically tries to cover the graph, visiting each transition and checking that the
outputs of the system occur as specified. ¶ When the protocol is deterministic, we can create
a bunch of static test cases in advance, and know exactly what to expect from the
implementation. ¶ But many protocols are non-deterministic, so the stimuli we provide to
the machine may depend on its previous responses. (More like a 2-way conversation
between tester and system.) We call this adaptive testing.

To check transitions, find
three kinds of traces in graph

• Synchronizing sequence takes machine from
any state back to start state (reset)

• Transfer sequence moves from one given state
to another (source of next transition to check)

• Unique input output sequence serves as
signature to distinguish given set of states

• Goal: test plan that maximizes graph coverage

Adaptive test plans are not just sequences, but trees (or DAGs): if the system system
responds this way, we’ll pursue that plan; otherwise try this other plan. ¶ To construct
adaptive tests for a given specification, it is very helpful to find 3 kinds of traces in the
graph… [READ]

G′ ∈ CTSG(v,v′) ifG′ ⊆ G,G′ is acyclic, and:
1. v,v′ ∈ V(G′)
2. ∀vi ∈ V(G′), vi ∈ RG′(v)∧ v′ ∈ RG′(vi)
3. ∀vi ∈ V(G′), |outG′(vi)| ≤ 1

∧ (|outG′(vi)| = 0 ↔ vi = v′)
4. ∀vi ∈ V(G′),∀a ∈ L, a ∈ outG′(vi)→

d−G′(vi, a) = d−G(vi, a)

Convergent Transfer Subgraph
• A representation of an adaptive transfer

sequence from one node to another

So, a Convergent Transfer Subgraph is a representation of an adaptive transfer sequence
from one node to another. I’ll go through the parts of the definition, then show an example.
¶ G’ is a convergent transfer subgraph from v to v’ in G if: G’ is an acyclic subgraph of G,
and…

G′ ∈ CTSG(v,v′) ifG′ ⊆ G,G′ is acyclic, and:
1. v,v′ ∈ V(G′)
2. ∀vi ∈ V(G′), vi ∈ RG′(v)∧ v′ ∈ RG′(vi)
3. ∀vi ∈ V(G′), |outG′(vi)| ≤ 1

∧ (|outG′(vi)| = 0 ↔ vi = v′)
4. ∀vi ∈ V(G′),∀a ∈ L, a ∈ outG′(vi)→

d−G′(vi, a) = d−G(vi, a)

Convergent Transfer Subgraph
• Source and sink are vertices of subgraph

…v and v’ are in the subgraph…

G′ ∈ CTSG(v,v′) ifG′ ⊆ G,G′ is acyclic, and:
1. v,v′ ∈ V(G′)
2. ∀vi ∈ V(G′), vi ∈ RG′(v)∧ v′ ∈ RG′(vi)
3. ∀vi ∈ V(G′), |outG′(vi)| ≤ 1

∧ (|outG′(vi)| = 0 ↔ vi = v′)
4. ∀vi ∈ V(G′),∀a ∈ L, a ∈ outG′(vi)→

d−G′(vi, a) = d−G(vi, a)

Convergent Transfer Subgraph
• All other vertices in subgraph are reachable

from source, and sink is reachable from them

…every node in the subgraph is reachable from the source v, and the sink v’ is reachable
from every node…

G′ ∈ CTSG(v,v′) ifG′ ⊆ G,G′ is acyclic, and:
1. v,v′ ∈ V(G′)
2. ∀vi ∈ V(G′), vi ∈ RG′(v)∧ v′ ∈ RG′(vi)
3. ∀vi ∈ V(G′), |outG′(vi)| ≤ 1

∧ (|outG′(vi)| = 0 ↔ vi = v′)
4. ∀vi ∈ V(G′),∀a ∈ L, a ∈ outG′(vi)→

d−G′(vi, a) = d−G(vi, a)

Convergent Transfer Subgraph
• Exactly one input symbol on all outgoing edges

from each node (except sink)

And here come the tricky bits: for each node, all outgoing edges share the same input
symbol… and the only node with no outgoing edges is the sink, v’. Finally…

Convergent Transfer Subgraph
• All non-determinism on that unique input

symbol must be preserved

G′ ∈ CTSG(v,v′) ifG′ ⊆ G,G′ is acyclic, and:
1. v,v′ ∈ V(G′)
2. ∀vi ∈ V(G′), vi ∈ RG′(v)∧ v′ ∈ RG′(vi)
3. ∀vi ∈ V(G′), |outG′(vi)| ≤ 1

∧ (|outG′(vi)| = 0 ↔ vi = v′)
4. ∀vi ∈ V(G′),∀a ∈ L, a ∈ outG′(vi)→

d−G′(vi, a) = d−G(vi, a)
At each node, all outgoing edges from the original graph sharing the chosen input symbol
must be present in the subgraph. Conceptually, that source of non-determinism must be
preserved. ¶ Let’s see an example…

Example of
Convergent Transfer Subgraph

0

6

32

7

4

8

5

1
a:
y b:z

b:
z b:y

a:y

a:x a:
z

b:z

a:y

b:
x b:y

a:z

b:
z

a:y

b:z

G′ ∈ CTSG(v,v′)

G′ ∈ CTSG(v0, v5)

This is not a CTS yet… this is the original specification graph, G. Suppose we want to effect a
transfer from state 0 to state 5. ¶ We would input b and take the transition to state 3. ¶
From there, we’d input a, but we don’t know in advance which edge the system will follow.
According to the definition, we must include both edges in the CTS, and in either case, we
need a plan for getting to state 5.

Example of
Convergent Transfer Subgraph

0

6

32

7

4

8

5

1
a:
y b:z

b:
z b:y

a:y

a:x a:
z

b:z

a:y

b:
x b:y

a:z

b:
z

a:y

b:z

0

3 4 5

1
b:z

a:y

a:x a:
z

a:y

G′ ∈ CTSG(v,v′)

G′ ∈ CTSG(v0, v5)

So here’s the Convergent Transfer Subgraph from state 0 to state 5. (We could have chosen
either edge from state 1.) [Check time…]

Algorithms to construct
convergent transfer subgraphs

Ghriga & Kabore ’99 polynomial, if sparsely
non-deterministic

Li, Ghriga, & Kabore ’00 square
O(n(n+e))

Li ’03 linear
O(n+e)

acyclic

acyclic

acyclic

So, to construct (or find) these subgraphs, a number of algorithms have been proposed. ¶
Ghriga & Kabore offered an algorithm that was polynomial but only if “sparsely deterministic”
… logarithmic amount of non-determinism… would become exponential otherwise. ¶ They
collaborated later with Wing-Ning Li, and developed an n^2 algorithm, which Li later
improved to linear. ¶ It’s truly hard to imagine beating that, but [CLICK] in all these cases
the input graphs are acyclic. Iteration can be very important in protocols, so we’d like to
investigate lifting this restriction.

"is contribution:
• Algebraic framework for incremental

construction and manipulation of
convergent transfer subgraphs

–within general labeled directed graphs
(cycles okay)

Our current work is an algebraic framework supporting the incremental construction and
manipulation of convergent transfer subgraphs, within general labeled directed graphs. ¶ It
is not itself an algorithm, but we expect it will lead to a variety of algorithms useful for
conformance testing. ¶ So, here’s what it looks like…

Projection operator G[x]
induces subgraph reachable from x
0

3 4 5

1
b:z

a:y

a:x a:
z

a:y 4 5

1

a:
z

a:yG

G[v1]

G

G[v1]

!eorem. IfG′ ∈ CTSG(v,w) andx ∈ V(G′)
thenG′[x] ∈ CTSG(x,w)

There are two operators. ¶ The first is a projection operator, G[x], which induces the
subgraph of nodes and edges reachable from x. That’s pretty simple, but the important
point is that [CLICK] if you start with a CTS and apply the projection operator, you still have
a CTS. ¶ The other operator needs a longer explanation…

Associate subgraphs
with characteristic functions

For “0–1 subgraphs”G′ ⊆ G where
∀v ∈ V(G′), |outG′(v)| ≤ 1 :

µG′ : V(G′)→ L∪ {0,⊥}

µG′(v) =

0 if v ∈ V(G′)∧ outG′(v) =∅
a if v ∈ V(G′)∧ outG′(v) = {a}
⊥ if v +∈ V(G′)

Can easily convert fromG′ to µG′ and back.

We start by associating certain subgraphs with characteristic functions. We call them 0-1
subgraphs, because each node has at most 1 input symbol on all its outgoing edges. (All
CTSs are 0-1 subgraphs, but not all 0-1 subgraphs are CTSs) ¶ For these subgraphs, a
characteristic function maps each vertex to its outgoing input symbol, to zero if that vertex is
a sink, or to ‘undefined’ (bottom) if the vertex is not present in the subgraph.

Composition operator
over range of µ

Remember, µG′ : V(G′)→ L∪ {0,⊥}
Forx,y ∈ L∪ {0,⊥}:

x ⊕y = y if y ∈ L
x ⊕ 0 = 0
x⊕ ⊥ = x

Now, over that extended input set, we define a composition operator “o-plus”. It always
returns it right parameter, unless that parameter is undefined.

Composition operator
over 0–1 subgraphs

G1⊕G2 defined as graph characterized by

µG1⊕G2(v) = µG1(v)⊕ µG2(v) ∀v ∈ V(G)

G2⊕G1

G1

G1⊕G2

G2

0

1

0

1 2

a:
y

a:
y

c:y 1

0

2

a:
y

c:y 1

0

2
a:
y

c:y

G2⊕G1G1 G1⊕G2G2

Using the characteristic function, we can apply that composition operator to 0-1 subgraphs
as follows. G1 o-plus G2 (where G1,G2 are both subgraphs of the same graph G) is the
graph characterized by the composition of the characteristic functions of G1 and G2, applied
to all vertices in the underlying graph G. [CLICK… examples]

Composition operator
over 0–1 subgraphs

!eorem. IfG1 ∈ CTSG(x,y) andG2 ∈ CTSG(y, z)
then (G1⊕G2)[x] ∈ CTSG(x, z)

It’s somewhat trickier to prove, but like the projection operator, the set of convergent
transfer subgraphs is closed over composition. Specifically, [READ]

"ese operators permit
incremental construction of CTS

• With them, we expect to build new efficient
algorithms useful for conformance testing
against non-deterministic finite state
transducers

So, because of these properties, we expect this framework to be a useful tool for building
traces used in adaptive conformance testing against non-deterministic specifications.

"anks!

christopher.league@liu.edu

mailto:christopher.league@liu.edu
mailto:christopher.league@liu.edu

