
Type-based compression
of XML data

Christopher League
Kenjone Eng

DCC • 29 March 2007

• web services

• document markup

• conduits between databases

• application data formats

• programming languages / compiler IR?

XML has become indispensible

Thanks. XML has become indispensible in for many different applications. What brought me
to this effort was the idea of representing PLs and compiler IRs in XML. ¶ But of course, …

XML is verbose

store

transmit

parse

XML is very verbose. Shown here is part of the representation of this slide show, which is
stored as gzipped XML. § So, because of its size, XML takes more space to store, more
bandwidth to transmit, and more time to parse (compared to a custom binary format).

Schema specifies structure

<book>
 <title>Alaska</title>
 <author>James A. Michener</author>
 <price currency=’USD’>11.96</price>
</book>

start = element book {
 element title {text},
 element author {text}+,
 element price {cur, text},
 element blurb {text}?
}
cur = attribute currency {
 "USD" | "EUR" | "JPY"
}

:⊦

• schema languages:
DTD, XML Schema (XSD), Relax NG, …

Our approach begins with the concept of a schema, or document type. The schema specifies
the structure of the XML: what tags and attributes are allowed where. ¶ Here’s an example
of a schema and an instance. I’m using a schema language called “Relax NG.” Note the
regex operators.

If sender & receiver agree on schema,
transmission can be streamlined

start = element book {
 element title {text},
 element author {text}+,
 element price {cur, text},
 element blurb {text}?
}
cur = attribute currency {
 "USD" | "EUR" | "JPY"
}

start = element book {
 element title {text},
 element author {text}+,
 element price {cur, text},
 element blurb {text}?
}
cur = attribute currency {
 "USD" | "EUR" | "JPY"
}

“Alaska”
“James A. Michener”

 “11.96”

Here’s the key insight: if sender & receiver (or reader & writer) agree on a schema, the
transmitted information can be greatly abbreviated. Here we’re just sending the textual data,
and a few numbers to indicate there’s just 1 author, no blurb, and the price is in U.S. dollars.

Extract tree structure from text and
encode them separately

<book>
 <title> • </title>
 <author> • </author>
 <price currency=’USD’> • </price>
</book>

Alaska
James A. Michener
11.96

+

schema-aware
tree compressor

generic text
compressor

We’re going to extract the tree structure from the text and encode them separately. For the
tree structure, we’ll need the schema, and I’ll describe that in a moment. For the text, we
just pass it to a generic text compressor, such as gzip.

‘Relax NG’ schema induces a tree
automaton used for validation

start = element book {
 element title {text},
 element author {text}+,
 element price {cur, text},
 element blurb {text}?
}
cur = attribute currency {
 "USD" | "EUR" | "JPY"
}

[Murata, et al. 2005]

12 3f “EUR”

e “USD”

g “JPY”

5 4!@* 3text

2 1!@* 6

3 11c 8

<title> 5

b <price> 10d <blurb> 5

<author> 5

a <author> 5

0 3<book> 2

10 9!@~currency

@currency 12

One of the nice things about Relax NG is that it has a very clean formal model, in the form of
tree automata. So I’ll show you how the book schema translates to an automaton. We start
at state 0, and transitions are labeled with a tag name and state number. The red octagon is
a final state. Subroutine...

12 3f “EUR”

e “USD”

g “JPY”

5 4!@* 3text

2 1!@* 6

3 11c 8

<title> 5

b <price> 10d <blurb> 5

<author> 5

a <author> 5

0 3<book> 2

<book><title>Alaska</title>
 <author>James A. Michener</author>
 <price currency=’USD’>11.96</price>
</book>

stack:

tree:

data:

33 6

Alaska

3 63 6 83 6 8

James A. Michener

Note path taken at
each choice point

10 9!@~currency

@currency 12

b

3 6 8 113 6 8 11 4

b e

3 6 8 11 4

11.96

3 6 8 11 4

b e c

4 bits

3 6 8 11 4

The automaton was developed to validate XML documents against the schema, but I can use
it to compress and decompress. We’ll do a small example. § We’ll need a stack to keep
track of subroutine calls. …

Usage: rngzip [options] [file ...]

Options:
 -c --stdout write to standard output; do not touch files
 -D --debug trace compressor; replaces normal output
 -E --tree-encoder=CODER use method CODER for encoding the XML tree
 -f --force force overwrite of output file
 --ignore-checksum decompress even if schema changed (not recommended)
 -k --keep do not remove input files
 -p --pretty-print[=TAB] line-break and indent decompressed output [2]
 -q --quiet suppress all warnings
 -s --schema=FILE|URL use this schema (required to compress)
 -S --suffix=.SUF use suffix .SUF on compressed files [.rnz]
 -t --timings output timings (implies -v)
 -T --tree-compressor=CM compress the encoded XML tree using CM
 -v --verbose report statistics about processed files
 -Z --data-compressor=CM compress the data stream using CM

Modes: compress is the default; this requires -s
 -d --decompress decompress instead of compress
 -i --identify print information about compressed files
 -h --help provide this help
 -V --version display version number, copyright, and license
 --exact-version output complete darcs patch context

Coders: fixed *huffman
Compressors: none *gz bz2

Implementation exists (in Java)

[thanks to Bali library by Kawaguchi]

In implementing this technique, we benefitted greatly from the Bali library by Kawaguchi
(@Sun). It parses the Relax NG specs and builds the automata. We had to post-process the
automata slightly, but without that library, we never would’ve gotten off the ground. Our tool
is in Java because the library is in Java.

Data sources
• gene — genome metadata from NCBI
• pubmed — bibliographic data from NCBI
• movies, actors — film data from IMDB
• sigmod, issue, proc — bibliographic data (ACM)
• niagara — from Niagara Query Engine (Wisc.)
• uw — course catalogs from U. Washington
• shakes — Shakespeare in XML (Jon Bosak)

Now, for some empirical analysis. We used a variety of different data sources: some small,
some large. Some are mostly tags, others mostly text, some in between.

The competition
• gzip, bzip2

• XMill

• XMLPPM*

• DTDPPM

[Liefke & Suciu 2000]

[Cheney 2001]

[Cheney 2005]

Our competition was the general-purpose compressors gzip and bzip, and some XML-aware
systems: XMill and XMLPPM. DTDPPM is another schema-aware system, but it never did
much better than XMLPPM. In our tests, XMLPPM was the one to beat.

0

0.25

0.50

0.75

1.00

1.25

gene pubmed movies actors issue

bzip2
xmill
xmlppm
rngzip

co
m

pr
es

se
d

siz
e,

re
la

tiv
e t

o
gz

ip
 (1

.0
0)

The good news

And here are the results. Good news first! These are compressed file sizes, relative to gzip,
at 1.0. On these data sets, we are doing significantly better than or comparable to xmlppm.
gene and pubmed are very taggy but highly regimented. But it’s not all good news…

0

0.25

0.50

0.75

1.00

1.25

niagara sigmod proc uw shakes

bzip2
xmill
xmlppm
rngzip

co
m

pr
es

se
d

siz
e,

re
la

tiv
e t

o
gz

ip
 (1

.0
0)

Not-so-good news

On some data sets, we do significantly worse. But, our textual data is just compressed with
gzip, so it makes sense that our performance would degrade to that of gzip for text-oriented
documents like Shakespeare. (Can easily substitute bzip.) ¶ So the results seem mixed, but
I have high hopes. Here’s why…

Variants for encoding the text
• Pipe through gzip

• Pipe through bzip2

• To do: Use parent tags to fill separate data
containers, like XMill

• To do: Use parent tags as context for prediction
by partial match, like XMLPPM

For the textual part of the documents, we’re being very naive. It’s completely possible to
adapt orthogonal techniques from XMill and/or XMLPPM here, using the tags to provide some
additional context for compressing text nodes.

Variants for encoding the tree
• Fixed bit sequence for each transition

• Adaptive Huffman model at each choice point
more frequent transitions eventually encode
with proportionally fewer bits

• To do: Byte-coded, then piped through general-
purpose compressor (gzip/bzip)

For encoding the tree, I mentioned in the example that we’d use a fixed number of bits for
each choice point, based on the number of transitions. We also implemented an adaptive
Huffman encoding so that It was suggested by a reviewer to try byte-coding…

Related work
• Sundaresan & Moussa [2002] proposed

“differential DTD compression”

- report poor run-time performance;

- unable to compress Hamlet

Some other researchers have thought of using document type information in similar ways. …

More related work
• Toman [2004] dynamically infers custom

grammar for each document; uses automata

- never beats xmlppm

Most related work
• Levene & Wood [2002] have nearly the same

idea, for DTD

- but no implementation / empirical results

- they prove an optimality result —
assuming non-recursive document type

Future directions
• Enable streaming / online compression

- a property of Relax NG makes it difficult

• Native Relax NG data sets? (OpenLaszlo)

• Support Relax NG datatype library

- need specialized encoders for dates, n-bit
integers, base-64 binary, DNA sequences, …

Thanks!

christopher.league@liu.edu

mailto:christopher.league@liu.edu
mailto:christopher.league@liu.edu

