A Type-Preserving
Compiler Infrastructure

Christopher League Advisor

Yale University Zhong Shao

17 May 2002 Committee
Kim Bruce

Arvind Krishnamurthy

Carsten Schiirmann
Acknowledgment

Valery Trifonov

Thesis

= A strongly-typed compiler intermediate
language can safely and efficiently
accommodate very different
programming languages

Christopher League

Mobile code, pervasive networks

= Wireless handheld computers

= Remotely programmable devices

= Browser applets

= Widely distributed
computation

Christopher League

Security is critical

= We might not completely trust the
programs we receive and run
= Must ensure they does not misbehave:
+ crash the device
+ exhaust resources
+ interfere with other programs/data

= Correctness is hard—focus on safety

Christopher League

Security toolbox: digital signature

= Confirms identity
of producer, not
safety of code

= I might not trust
Microsoft,
but would still
run the code—
assuming it is
harmless

Christopher League

Security toolbox: reference monitor

- = Code runs in a sandbox

7 - interactions with outside world
mediated by the monitor

= Hardware mechanisms

impractical for « expensive context switches
monitorin, . .

onrtoring + not available on all devices
fine-grained

properties = Software rewriting
+ frequent dynamic checks

Christopher League

Security toolbox: language features

= Array bounds checking

= Garbage collection

= Exceptions

= Encapsulation, access control
= Type systems

Christopher League

Many vulnerabilities are type errors

Date System Kind

1/24/02 AOLICQ remotely exploitable buffer overflow

1/14/02 Solaris CDE buffer overflow vulnerability
12/20/01 MS u-PNP buffer overflow vulnerability
12/12/01 SysV-login’ remotely exploitable buffer overflow
11/29/01 WU ftpd format string vulnerability;

free() on unallocated pointer

11/21/01 HP-UXIpd remotely exploitable buffer overflow
10/25/01 Oraclegi AS remotely exploitable buffer overflow

10/5/01 CDE ToolTalk format string vulnerability

[CERT advisories]

Christopher League

8

The need for typed machine code

= Is it enough to program in
type-safe languages?

(ML, Haskell,
Java, C#)

Christopher League

The need for typed machine code

= Is it enough to program in

pregd

conSume \ type-safe languages? No.

1. Microsoft is unlikely to
ship source code

2. Still must trust compiler
[Thompson 1984]

[otegen]

object
code

[rmime e |

Christopher League

> = Trusted Computing Base

+ system modules responsible
for supporting security policy

Vision: high assurance systems
with minimal TCB

=~ 1,000 LOC vs. 30,000+
(We are not there yet!)

""""" “Foundational
proof-carrying code”
[Appel et al. 2001]

verifier E
runtime system H

Christopher League

Key: type-preserving compiler

typed
binary

verifier E
runtime system

Christopher League

Until now: functional languages
or “safe C”

| = TIL/ML
[Tarditi, Morrisett et al. 1996]
= FLINT/ML

[Shao 1997]

= Touchstone
[Necula & Lee 1998]

= Popcorn
verifier j = Scheme——
@n [Morrisett et al. 1999]

Christopher League 13

Real world: object-oriented

= Widely used (Java, C++)

= New, complex features
+ dynamic binding
+ dynamic casts
+ inheritance

+ interfaces

[erfier [] + name-based types
runtime system

Christopher League 1

Contributions

ML BAZY - Single typed IL that supports

(it (e] V2 and ML
""""""" + Not partial to either language

JFlint
IL

[_code gen |

= Novel techniques for encoding
most features of Java

+ Same efficiency as untyped

typed + Preserves safety guarantees
binary

[= New high-level IL for Java

@] + JVM primitives with functional flow
runtime system + Easier to verify and optimize

Christopher League

Outline

= Dynamic dispatch security hole
= How our approach is different
= Safe and efficient object encoding

= Functional Java byte code
= A prototype compiler for Java and ML

Christopher League 16

Dynamic binding: essential to OO

= Inheritance without polymorphism is
possible, but certainly not very useful.
= One can declare derived types, but the
actual operation being called is always
known at compile time.
[Booch 1994]

Christopher League 7

Efficient dynamic dispatch

X

public static void vtbl -
example (Object x, Objecty) hash toStrm% . 7 ?
{ x.toString(); equa __D

// compiles to:

(null check)

letr1 = x.vitbl ; // method suite

let r2 = r1.toString ; // method pointer
r2(x) // “self application”

Christopher League 8

Must ensure the call is safe

X

public static void vtbl -
example (Object x, Objecty) hash toStrm% - 7 ?
{ x.toString(); equa __D

// compiles to:

(null check)

let r1 = x.vtbl ;

let r2 = r1.toString ;

r2(x); // this is sound

r2(y) // this is not!
¥

Any unsoundness can be exploited

Christopher League 19

Cast arbitrary integer to pointer

class Ref extends Object X
{ public byte[] vec;

vtbl

public String toString() hash)
{ vec[13] = 42; vee
return “Ha!” ; Y
} vtbl| 7
! hash|

class Int extends Object

{ publicint i; public static void

} example (Object x, Object y)
example(new Ref(...), { letri=xwvtbl;

. let r2 = r1.toString ;
new Int(...)); r2(y) // wrong!

Christopher League

This is a major security hole
in Cedilla Systems’ PCC [Colby et al. 2000]

Special J
= Java compiler; generates annotated x86
= Types retain Java abstractions

(object_ty C)

(method_ty C SIG)
= Faulty axiom; undetected for 3+ years

Christopher League

Our approach is different

e = Start with a strong foundation
+ “off the shelf” type theory
+ not specific to Java (or ML)
e + simple soundness proof
B[00 [A30 g0f * Design complex encodings
type ‘i'héOfV of Java features that
: research 88 - preserve type safety

+ maintain efficiency

Christopher League 23

Others have encoded objects
in type theory

[Cardelli 84] [Cook et al. 89]
[rieree & Tumer o) Bruceos) @ 'These are models of OOP
[Hofmann & Pierce 95]

[Abadi, Cardelli, Viswanathan 96]

= Rather inefficient
+ extra indirections
+ extra function calls

 decades of

TYPG Theory # = Assumed subsumption
= l'esanCh = + a Circle is also a Shape

Christopher League 24

Type theory toolbox: rows
[Rémy 1993]

8
32
iz

= Intuition: the suffix or tail
of a record type,
starting at a given offset

Christopher League 25

Type theory toolbox: recursion

= Intuition: p notation for recursive definitions
+ list = { data: int, next: list }

= Replace recursive ref. with a type variable:
+ list = po..{ data: int, next: o }

+ let x = fold y as list
+ let y : { data: int, next: list } = unfold x

Christopher League 26

Type theory toolbox: existentials
[Mitchell & Plotkin 1988]

= Intuition: hide a type from outsiders
+ enforces abstract data types

sletxt:3a.{z:a, f:a>string }
= (B=int, { z=42, f=intastring }
:{z:B,f:p > string })
«openxtas(d, y:{z:9,f:8 > string })
inyf(y.z)

Christopher League 27

The type of Object

ObjTy[Object] = o TgB—D
3 fs::R8 ms::R4.
u self. ObjRed[Object] fs ms self

ObjRcd[Object] fs ms self =
{vtbl : { toString : self > string ;

ms}s;
hash : unsigned ;
fs} = Hide the differences between
sub- and super-class.

Provably safe method invocation...

example (x, y : ObjTy[Object]) = rx

open x as (fx, mx, x1 : pself. ObjRed[Object] fx mx s@ ;
let x2 : ObjRed[Object] fx mx rx = unfold x1 ;
let r1 : { toString : rx > string ; mx } = x2.vtbl ;

let r2 : rx > string = r1.toString ;

r2(x1) ObjTy[Object] =
3 fs::R8, ms::R4.
u self. ObjRed[Object] fs ms self
ObjRed[Object] fs ms self =
{ vtbl : { toString : self > string ;
ms};
hash : unsigned ;

Jsx

Christopher League

...without sacrificing efficiency

example (x, y : ObjTy[Object]) =

let r1 =x2.vtbl;
letr2 = r1.toString ;
r2(x:)

Christopher League 30

Techniques extend to most of Java

* classes = Chapters 3—5 contain:
= inheritance .
a e di h + Formal definition of source
* dynamic dispatc language (Featherweight Java)

dynamic cast

. + Formal definition of
mutual recursion

intermediate language (JFlint)

interfaces

+ Proofs that JFlint is sound and
decidable

constructors

super calls
+ Type-directed translation

= subroutines
= exceptions + Proof that well-typed inputs
= privacy yield well-typed outputs

Christopher League 3

Act I

= Functional Java byte code
= A prototype compiler for Java and ML

Christopher League 32

System building

= A prototype compiler for Java and ML
= Many practical problems must be solved

+ Efficient implementation of IL
+ Large semantic gap between Java and JFlint

Christopher League 33

Where to start?

= Java = Many details are not
x.println(y); explicit in Java
javac source

= JVMLb d
yte code = Java byte code has

3 aload_o # this

4 getfield PrintStream C::x ,untypf?d local vars &
7 dload 2 implicit data flow

9 invokevirtual

void PrintStream::println(double)

Christopher League 34

Two sets of concerns

1. data & control flow, type inference
2.expanding Java primitives

= JVML byte code > JFlint

aload_o # this
getfield PrintStream C::x
dload 2
invokevirtual
void PrintStream::println(double)

O N AW

Christopher League 35

A new IL to bridge the gap

= High-level Java
primitives, types

= JVJML ———— AYM — JFlint

= Functional control
and data flow

Christopher League 36

A better Java byte code

= JVML AYM —» JFlint

= Fully explicit
+ Supports all of JVML, yet is
+ Easier to verify and optimize
= Nastiest parts of JVM become tractable
+ Object initialization [Freund & Mitchell 1999]
+ Subroutines [Stata & Abadi 1998]
= Verification is just simple type checking
+ <260 lines of ML code
[Chapter 7]

Christopher League 37

Example: Factorial

public int fact(int n) public int fact (int n)
{ intx; { iconst_1
for(x=1; n>0; n——) istore_1 #x=1
X=XxXN; goto T
return x; L iload_1
¥ iload_o
imul

istore_1 #x=xxn
iinc 0 -1 #n——

T iload_o
ifgt L #n>0
iload_1
ireturn

Christopher League

Example: Factorial

public int fact(int n) = public int fact (int n)
letrecL=A(i:Lx:I). { iconst_1
lety=xx1; istore_1 #x=1
let j=i-1; goto T
TG y) L iload_1
andT=Mk:Lz:1). iload_o
ifn>othenL(k,z) imul
else return z istore_1 #X=xxn
inT(n1) iinc 0 -1 #n——
T iload_o
ifgt L #n>0
iload_1
ireturn
}

Christopher League 30

Subroutines are tricky

= jsr offset — push return address, jump
= ret var — return to address in var

= Used to implement ‘“finally’ blocks

try{A}
catch (Error e) { B; throw e }
finally { C'}

= Can achieve complicated control flow

Christopher League

Continuation-passing style

[Steele 1978] [Kranz et al. 1986]

= The higher-order answer to flexible
control flow
+ Represent return address as a function

Christopher League a

1. ret need not obey stack discipline

void main(String[] args) M jsr A
{ ty{} gotoR
finally A astore_1 # return addr
{ while(true) L jsrB
{ uy{} goto L
finally { break; } B pop # return addr
¥ ret1
¥ R return

}

Christopher League

1. ret need not obey stack discipline

letrecM =A() . A(R) M jsr A
and A=Mki:0>V). goto R
letrec L=A() . B(L) A astore_1 # return addr
and B=A(k2:0>V). L jsr B
ki() goto L
inL() B pop # return addr
and R=A().return ret1
in M() R return

Christopher League a3

2. Subroutine might update local var

letrecM =\() . S(43, P) M 1dc 43)

and S= Mi:Lk:(D>V). istore_1 #1=43
letj=i—1; jsrS
k() goto P

and P=A>i:1). S astore_2 #return addr
invoke printInt (i) ; 1r1£[c20 -t #I

return P iload_1 #print i

invoke printInt
return

inM()

Christopher League a4

3. Polymorphic over untouched vars

letrecS=Mk:()>V).k(in M ldc3.14

letrecM =A(). fstore_1 #x=3.14
letx1=3.14; JsrS
letrecI=A(). I fload_1
invoke printFloat (x1); invoke printFloat
letx2=42; 1dc 42
letrec R=A(). istore_1 #x=42
invoke printInt (x2); jsrS
return R iload_1
in S(R) invoke printInt
in S(I) return
in M() S astore_2 # return addr

ret 2

Christopher League 45

System overview

= Based on SML/NJ compiler 110.30

+ added a new type-preserving Java front end

+ interactively loads and runs Java classes
= Same back end and runtime system
= Front end = 8k LOC; JFlint checker = 1k LOC
= Runs CaffeineMark 3.0 (12 classes, =~ 100k)
= Compile time just 60% longer than gcj
= Does not load native code!

Christopher League 46

Synergy with ML front end

Iy = The type system is impartial
JFlint |Java ML
v . . . !
Brin: inheritance parametric poly.
1L El object enc. closures
n rec. classes rec. datatypes
typed tags dynamic cast | exceptions
binary .
- rows object enc. —
verifier j records | vtable, objects |records, tuples
runtime system H functions | methods functions

Christopher League a7

Summary

= Mobile code security is critical
= High-assurance systems need minimal TCB
= Type-preserving compilers are the key
= With care, they scale to real languages
+ use type theory as the foundation;
+ focus on practical encodings

= A single typed IL can safely and efficiently
support different kinds of source languages

Christopher League 48

