MetaOCaml Server Pages:
Web publishing as staged computation

Christopher League

NEPLS
27 October 2005

LONG ISIAND
UNIVERSITY,, -

._//—/

Web site = computer program

 Modern dynamic web services
are computer programs

= To support collaboration &
personalization

= Examples: web mail, e-<commerce, ‘blogs,
event calendar, political action network,
etc.

Performance matters

* A dramatic increase in web traffic can
bring down the server (the slashdor etfect)

& & & Slashdot: News for nerds, stuff that matters

« @ [B €3 hitp://slashdot.org/ ~Q~ Google

Slashdot a > '\ © =

News for Nerds. Stuff that matters.
The next Slashdot story will be ready soon, but subscribers FNEEEN L
can beat the rush and see it early!

chrystophe
Preferences

Subscribe

JI—“"“‘: IT: MS Upgrades To Be Smaller And More
Frequent

Posted by Zonk on Thu 15 Sep - -
" . 4
Main 01:10PM I ONCE YOt KNOW, ¥OU NENEGS.
Apache from the taking-the-mmog-model dept.

Apple duplicantk8 writes "Following the
AslSlashdot numerous delays to the Vista launch, MS

3 : : c :

B m"[” is planning fo have more frequent and smaller incremental
OOES §

BSD uperades, according to the Financial Times." From the

article: "Thase delays are set to end late next year with the

1 more simultaneous launch of new versions of Windows and the =
Games Office suite of PC applications in the company's most EIII!I‘H["]H IS
10 more significant new product cycle since Windows 93, The new a Il“r ":Ia“.
Hardware versions of the company's key PC software are likely fo -

]1:“"“‘_ rekindle higher growth after a period that saw its growth al
NISIVIEWS

rate slip below 10 per cent for the first time last yvear,
according o Wall Srreet analvsis. Mr Ballmer's commenis

Gospel according to CmdrTaco

“When you’re actually loading a
page, even if 1t’s a complicated page
that looks dynamic and custom,
we re really just putting together a
bunch of puzzle pieces that have
been pre-generated, and making the
simplest, quickest decisions we possibly

can.

— Rob Malda, creator of slashdot
from J. Turner, “How to survive being slashdotted.” LinuxWorld Magazine 2(1), 2003.

3 stages of web service

1. Developer publishes content
2. Server transfers content
3. Browser displays content

Each stage, different language

..

s : PHP Java applets
Perl mod perl JavaScript,
rto- html e : Flash

“Web-site Meta Language —
“off-line HTML generation toolkit”

Staging using today's tools

* One script outputs another

=> Values passed from one stage
to the next as strings

= Programmer manages quoting and
cross-stage persistence by hand

Staging using today’s tools
e Example: unholy PHP code

for cross-stage persistence:

<?= “<?\n” ?>
<?= "\$data = unserialize(\"".
addcslashes(serialize($data),’"").

“\”);\n” ?>

<?= “?>\n r ?>

Our idea

* A single web programming language
that can express various staging
possibilities, safely and precisely,

—> by leveraging the staging annotations

of MetaOCaml.
|Calcagno, Taha, Huang, & Leroy: GPCE 03]

Caveat

Stage 1
Publish stage

Oft-line Stage 2
Publish Serve stage
On-line

* We exclude the final (display) stage
from our system, for now.

10

Outline

* Review of multi-stage language

* Design of MetaOCaml Server Pages
e Examples & demonstration

* Performance results

e Limitations & future work

1"

What is multi-stage prog?

* Type-safe program generation

= One program produces another
program as 1ts output

= The output program can be executed
some time later, possibly many times.

12

Unstaged computation

inputs

P g

13

Staged computation

early input late input

ﬂ output

stage 1 stage 2

14

Staging annotations: MetaOCaml

.< expr >. brackets

. expr escape

A expr run

15

‘Brackets’ construct code

* Normally, expressions are evaluated
immediately:

374 = 12

* Brackets cause the expression within to
be delayed until some future stage:

<3*4> »

16

‘Run’ executes code

1. <3%4> = 374 = 12

17

‘Escape’ splices in code

<3*.7(<4*5>5)> -
<3*(4*5)>,

* Programs annotated with these
operators are capable of generating
custom code to be executed later.

18

‘Escape’ is not delayed

<3*."(lety=4*5in .<y>)> =
<3*."(lety=20in .<y>)> =
<3*.7(<20>.)> =

<3 7*20>.

19

Typical example: power function

let even n=(n mod 2) =0
let square x = x * x
(* power : int = int code — int code *)
let rec power n x =
if n = 0 then .< 1 >.
else if even n then
.<square .~ (power (n/2) x)>.
else
<."x * .7 (power (n-1) x)>.

20

Typical example: power function

1 .<fun x = .7 (power 11 .<x>.)>.
= fun x = x * square(x * square(square X))

let rec power n x =
if n =0 then .< 1 >.
else if even n then
.<square . (power (n/2) x)>.
else
<.7x * .7 (power (n-1) x)>.

21

Outline

v Review of multi-stage language

* Design of MetaOCaml Server Pages
e Examples & demonstration

* Performance results

e Limitations & future work

22

‘Server page’ conventions

 Source 1s text/html by default.

e Embed code between delimiters:

<h1>This 1s text</h1>
<? puts "And this is code.” ?>

23

Various kinds of code blocks

* Declarations — evaluated in publish

stage, but also lifted above other code

<?™ open Queue
let some_function xy = ... 2>

 Serve-stage code

<? let result = some_function a b ?>

e Short-cuts for printing strings

<?= string_of_int result 7>
<?"%4d" result 7>

24

Translating a server page

e Before they may be used, the server
page syntax must be translated to

plain MetaOCaml.

25

Translating a server page

<?pragma args a b c 7>
<? ~ declarations ?>

<? statements 7>

<? = string_to_be_printed ?>
Regular text.

<?"format string" d, e ?>
<? = more_declarations ?>
<? let x = expression ?>

<? more_statements ?>
Bye!

module Trans = struct
let lift x = .<x>.
declarations
more_declarations

let page a b ¢ = .<fun req puts —
let arg = Request.arg req in
statements ;

puts (string_to_be_printed);

puts "Regular text.\n";

Printf.kprintf puts "format string" (d) (e);
let x = expression in

more_statements ;

puts "Bye!\n";

>.

end

26

Syntactic sugar for staging

e Use 7’ to splice in publish-stage code.
T a - <?.7(a) ?>
<™= 7> - <= .~(b) 2>
<?7letx=c?> = <letx=.7(c) >

e Use ‘I’ to execute 1n publish stage.
<?ld?> = <2 .7 (lift(d)) ?>
l=e ?> = <=7 (lift(e)) 7>
lletx=f1 2> = <?let x = .7 (lift(f)) 7>

27

Outline

v Review of multi-stage language

v Design of MetaOCaml Server Pages
* Examples & demonstration

e Performance results

e Limitations & future work

28

(switch to demo)

Staged power script

<?"open Num (* for arbitrary-precision arithmetic *)
let width = 54
let rec wrap puts s = (* wrap ‘s’ into a fixed-width block *)
if String.length s < width then puts s else
(puts (Str.string_before s width); puts "\n";
wrap puts (Str.string_after s width))
let is_zero = eq_num (Int 0)
let square x = .<let z = ."x inz */ z>.
let rec power n x = (* staged power function *)
if is_zero n then .<Int 1>. else
if is_zero (mod_num n (Int 2)) then square(power (n//Int 2) x)
else .< ."x */ .7 (power (n —/ Int 1) x)>. 7>
<?pragma argsy 7>
<Mlet y' = string_of_numy 7>
<?let x' = match (arg "x") with Some v.— v | None — "2" 7>
<?=preamble(x'~"~""y") (* Output begins here *) 7>
<= navbar("/power" “string_of_num y) 7>
<form method="get’> This page computes
<input name="x" type="text’ value="<?=x'?>" size="20"/>
<sup><?=y' ?>< /sup> </form>
<77 let result = power y .< num_of_string x'>. 7>
<p>The result is:
<pre><?wrap puts (string_of_num result) ?></pre></p>
<?=postamble 7>

30

Outline

v Review of multi-stage language

v Design of MetaOCaml Server Pages
v Examples & demonstration

* Performance results

e Limitations & future work

31

Methodology

e Measured throughput—number of
requests answered per second

e Apache HTTP benchmarking tool (ab)

1issued requests from 8 threads
simultaneously for 30 seconds

 On otherwise 1dle Intel Xeon
workstation: Linux 2.6, 768MB RAM,
512kB cache, Ultra1l60 SCSI

32

Throughput for power function

1,000
300
600
400
200

0

Requests per second

127 255 511 1023 2047 4095 8191
Exponent (2°)
O Staged 1F Unstaged

33

Throughput for dir. browsing

1,000
300
600 \A
400
200
0

Requests per second

2 4 3 16 32 64
Number of files in directory

Staged with MD5

F Unstaged with MD5
Staged without MD5

<> Unstaged without MD5

34

Outline

v Review of multi-stage language

v Design of MetaOCaml Server Pages
v Examples & demonstration

v Performance results

e Limitations & future work

35

Limitations

* MetaOCaml cannot (yet!) read/write
generated code from/to disk.

* Therefore, all server pages must be
available in memory when server starts.

e Error messages refer to translated code,
not the source.

36

Future directions

e Extend to display (third) stage.

e Statically validate generated (X)HTML.

[Wallace & Runciman: ICFP °99]
|[Elsman & Larsen: PADL "04]

 Stage a complete content management

system (CMS)

* Implement as module of a real server

(e.g, Apache).

37

Conclusion

e MetaOCaml server pages:
a new domain-specific language for
web applications programming.

* Provides safe and precise control over
staging of web services.

* Substantial benefits in performance
and expressiveness.

38

