
MetaOCaml Server Pages:
Web publishing as staged computation

Christopher League
NEPLS
27 October 2005

2

Web site = computer program

• Modern dynamic web services
are computer programs
➙ To support collaboration &

personalization
➙ Examples: web mail, e-commerce, ’blogs,

event calendar, political action network,
etc.

3

Performance matters

• A dramatic increase in web traffic can
bring down the server (the slashdot effect)

4

Gospel according to CmdrTaco

“ When you’re actually loading a
page, even if it’s a complicated page
that looks dynamic and custom,
we’re really just putting together a
bunch of puzzle pieces that have
been pre-generated, and making the
simplest, quickest decisions we possibly
can.”

from J. Turner, “How to survive being slashdotted.” LinuxWorld Magazine 2(1), 2003.

— Rob Malda, creator of slashdot

5

3 stages of web service

1. Developer publishes content
2. Server transfers content
3. Browser displays content

DisplayPublish

Serve

6

Each stage, different language

JSP,
ASP,
PHP,
mod_perl

Java applets,
JavaScript,
Flash

WML,*
Perl,
x-to-html

*Web-site Meta Language —
 “off-line HTML generation toolkit”

DisplayPublish

Serve

7

Staging using today’s tools

• One script outputs another
➙ Values passed from one stage

to the next as strings
➙ Programmer manages quoting and

cross-stage persistence by hand

8

• Example: unholy PHP code
for cross-stage persistence:

<?= “<?\n” ?>
<?= “\$data = unserialize(\””.
 addcslashes(serialize($data),’”’).
 “\”);\n” ?>
<?= “?>\n” ?>

Staging using today’s tools

9

Our idea

• A single web programming language
that can express various staging
possibilities, safely and precisely,
➙ by leveraging the staging annotations

of MetaOCaml.
[Calcagno, Taha, Huang, & Leroy: GPCE ’03]

10

Caveat

• We exclude the final (display) stage
from our system, for now.

Stage 1
Publish stage
Off-line Stage 2

Serve stage
On-line

Publish

Serve

Display

11

Outline

• Review of multi-stage language
• Design of MetaOCaml Server Pages
• Examples & demonstration
• Performance results
• Limitations & future work

12

What is multi-stage prog?

• Type-safe program generation
➙ One program produces another

program as its output
➙ The output program can be executed

some time later, possibly many times.

13

Unstaged computation

P output

inputs

14

stage 1 stage 2

P P’

early input late input

Staged computation

output

15

Staging annotations: MetaOCaml

.< expr >. brackets

.~ expr escape

.! expr run

16

‘Brackets’ construct code

• Normally, expressions are evaluated
immediately:

• Brackets cause the expression within to
be delayed until some future stage:

3 * 4 ➙ 12

.< 3 * 4 >. ➙

17

‘Run’ executes code

.! .< 3 * 4 >. ➙ 3 * 4 ➙ 12

18

‘Escape’ splices in code

.< 3 * .~(.< 4 * 5 >.) >. ➙

.< 3 * (4 * 5) >.

• Programs annotated with these
operators are capable of generating
custom code to be executed later.

19

‘Escape’ is not delayed

.< 3 * .~(let y = 4 * 5 in .< y >.) >. ➙

.< 3 * .~(let y = 20 in .< y >.) >. ➙

.< 3 * .~(.< 20 >.) >. ➙

.< 3 * 20 >.

Typical example: power function

20

let even n = (n mod 2) = 0
let square x = x * x
(* power : int → int code → int code *)
let rec power n x =
 if n = 0 then .< 1 >.
 else if even n then
 .<square .~(power (n/2) x)>.
 else
 .<.~x * .~(power (n-1) x)>.

Typical example: power function

21

 .! .<fun x → .~(power 11 .<x>.)>.
⇒ fun x → x * square(x * square(square x))

let rec power n x =
 if n = 0 then .< 1 >.
 else if even n then
 .<square .~(power (n/2) x)>.
 else
 .<.~x * .~(power (n-1) x)>.

22

Outline

✔ Review of multi-stage language
• Design of MetaOCaml Server Pages
• Examples & demonstration
• Performance results
• Limitations & future work

23

‘Server page’ conventions

• Source is text/html by default.
• Embed code between delimiters:

<h1>This is text</h1>
<? puts “And this is code.” ?>

24

Various kinds of code blocks

• Declarations — evaluated in publish
stage, but also lifted above other code

• Serve-stage code

• Short-cuts for printing strings

<?^ open Queue
 let some_function x y = … ?>

<? let result = some_function a b ?>

<?= string_of_int result ?>
<?”%4d” result ?>

25

Translating a server page

• Before they may be used, the server
page syntax must be translated to
plain MetaOCaml.

26

module Trans = struct

let lift x = .< x >.

declarations

more declarations

let page a b c = .< fun req puts →

let arg = Request.arg req in

statements ;

puts (string to be printed);

puts "Regular text.\n";

Printf.kprintf puts "format string" (d) (e);

let x = expression in

more statements ;

puts "Bye!\n";

>.

end

<? pragma args a b c ?>

<? ^ declarations ?>

<? statements ?>

<? = string to be printed ?>

Regular text.
<? "format string" d, e ?>

<? ^ more declarations ?>

<? let x = expression ?>

<? more statements ?>

Bye!

Translating a server page

27

<?~ a ?> ➙ <? .~(a) ?>
<?~= b ?> ➙ <?= .~(b) ?>
<?~let x = c ?> ➙ <?let x = .~(c) ?>

<?! d ?> ➙ <? .~(lift(d)) ?>
<?!= e ?> ➙ <?= .~(lift(e)) ?>
<?!let x = f ?> ➙ <?let x = .~(lift(f)) ?>

Syntactic sugar for staging

• Use ‘~’ to splice in publish-stage code.

• Use ‘!’ to execute in publish stage.

28

Outline

✔ Review of multi-stage language
✔ Design of MetaOCaml Server Pages
• Examples & demonstration
• Performance results
• Limitations & future work

(switch to demo)

Staged power script

30

^open Num (* for arbitrary-precision arithmetic *)
let width = 54

3 let rec wrap puts s = (* wrap ‘s’ into a fixed-width block *)
if String.length s ≤ width then puts s else

(puts (Str.string before s width); puts "\n";
6 wrap puts (Str.string after s width))

let is zero = eq num (Int 0)
let square x = let z = x in z */ z

9 let rec power n x = (* staged power function *)
if is zero n then Int 1 else
if is zero (mod num n (Int 2)) then square(power (n//Int 2) x)

12 else x */ (power (n −/ Int 1) x)
pragma args y
let y’ = string of num y

15 let x’ = match (arg "x") with Some v → v | None → "2"
preamble(x’^"^"^y’) (* Output begins here *)
navbar("/power"^string of num y)

18 form method=’get’ This page computes
input name=’x’ type=’text’ value=’ x’ ’ size=’20’/
sup y’ /sup /form

21 let result = power y num of string x’
p The result is:
pre wrap puts (string of num result) /pre /p

24 postamble

Fig. 6. power.meta. The staged power function as illustrated in figure 5.

non-numeric text into the box), the navigation bar and form will have already
been output before the error message appears.

In section 5, we will measure the impact of staging on the scalability of this
application. To derive the un-staged version for comparison, we simply convert

and blocks into plain and remove all other brackets and escapes
from the code in figure 6.

3.2 Directory browsing

Now we consider a more substantial example. Many web servers can be config-
ured to permit clients to browse directories. The web server generates, on the
fly, an HTML page containing the names and attributes of (and hyperlinks
to) all the files in the directory. In Apache, the mod autoindex module pro-
vides this feature. ViewCVS 11 is a more complex example of the same idea; it

11 http://viewcvs.sourceforge.net/

12

31

Outline

✔ Review of multi-stage language
✔ Design of MetaOCaml Server Pages
✔ Examples & demonstration
• Performance results
• Limitations & future work

32

Methodology

• Measured throughput—number of
requests answered per second

• Apache HTTP benchmarking tool (ab)
issued requests from 8 threads
simultaneously for 30 seconds

• On otherwise idle Intel Xeon
workstation: Linux 2.6, 768MB RAM,
512kB cache, Ultra160 SCSI

33

Throughput for power function

0

200

400

600

800

1,000

127 255 511 1023 2047 4095 8191

Staged Unstaged

R
eq

ue
st

s
pe

r
se

co
nd

Exponent (2x)

34

Throughput for dir. browsing

0

200

400

600

800

1,000

2 4 8 16 32 64

Staged with MD5
Unstaged with MD5
Staged without MD5
Unstaged without MD5

R
eq

ue
st

s
pe

r
se

co
nd

Number of files in directory

35

Outline

✔ Review of multi-stage language
✔ Design of MetaOCaml Server Pages
✔ Examples & demonstration
✔ Performance results
• Limitations & future work

36

Limitations

• MetaOCaml cannot (yet!) read/write
generated code from/to disk.

• Therefore, all server pages must be
available in memory when server starts.

• Error messages refer to translated code,
not the source.

37

Future directions

• Extend to display (third) stage.

• Statically validate generated (X)HTML.

• Stage a complete content management
system (CMS)

• Implement as module of a real server
(e.g., Apache).

[Wallace & Runciman: ICFP ’99]
[Elsman & Larsen: PADL ’04]

38

Conclusion

• MetaOCaml server pages:
a new domain-specific language for
web applications programming.

• Provides safe and precise control over
staging of web services.

• Substantial benefits in performance
and expressiveness.

