
Christopher League

Typed compilation of objects

6 November 2003
Stevens Institute of Technology



2

©2003 Christopher League

• We must ensure safe, efficient execution
of untrusted code

• Digital signature confirms identity, not safety

• Reference monitor too expensive for
fine-grained properties

Why typed compilation?



3

©2003 Christopher League

• Develop sound & decidable type system for 
intermediate and object languages

• Transform source-level type information

• Emit object code + typing derivation

How does it work?



4

©2003 Christopher League

Why objects?
• Cannot deny that OO technology remains popular...



5

©2003 Christopher League

• Cannot deny that OO technology remains popular...

• Thus, for certifying compilation to be viable,
we must support OO!

Why objects?



6

©2003 Christopher League

• C++ compiler hacker:

“An object is just a struct with a pointer to 
a struct containing function pointers.”

• True, but that fails to capture the subtle invariants 
that make it work...

What is an object?



7

©2003 Christopher League

• Functional programming advocate:

“An object is just a closure
with multiple entry points.”

• Maybe, but that fails to account for
dynamic binding.

What is an object?



8

©2003 Christopher League

• Inheritance without polymorphism is possible, 
but certainly not very useful.

• One can declare derived types, but 
the actual operation being called is 
always known at compile time.

[Booch 1994]

Dynamic binding is essential



9

©2003 Christopher League

• Object layout — efficient dynamic dispatch

• Object encoding — capturing the invariants

• Additional issues in compiling Java

• Compiling non-manifest base classes

Outline



10

Object layout



11

©2003 Christopher League

• von Neumann architecture has no notion of 
methods, objects, classes, inheritance, or
dynamic binding

• We must map these features onto load/store 
operations and sequential memory

• Procedural abstractions (records and functions)
are “closer to the metal”

What is object layout?



12

©2003 Christopher League

• Whether or not they know type theory,
they certainly understand invariants

• The efficient layout used in C++ works for a reason

• Can we understand and capture that reason?

Learn from compiler hackers



13

©2003 Christopher League

Implementing dynamic dispatch
Object x = ...;
x.toString(); // invokevirtual — a primitive

// of the Java Virtual Machine



14

©2003 Christopher League

Implementing dynamic dispatch

toString

...

equal

x
vtab

...

Object x = ...;
x.toString();

// virtual method call expands to:
if (x == null) throw NullPointerExn;
r1 = x.vtab;
r2 = r1.toString;
call r2 (x);

self argument



15

©2003 Christopher League

Multiple objects share vtable

toString

...

equal

x
vtab

...

Object x = ...;
x.toString();

Object y = ...; y vtab

...



16

©2003 Christopher League

Subclasses share method code

toString

...

equal

x
vtab

...

toString

...

equal

read

close

Object x = ...;
x.toString();

InputStream z = ...;
z vtab

...



17

©2003 Christopher League

Breaking the invariant
Object c = new C();
c.toString();

// virtual method call
(null check)
r1 = c.vtab;
r2 = r1.toString;
call r2 (c);

toString

equal

c
vtab

a

toString

equal

d vtab

i

Object d = new D();

78

call r2 (d);



18

©2003 Christopher League

• The object passed as the self argument must be the 
same object from which the method was selected

• (Actually, it must belong to same dynamic class)

• Goal:

• Encode that invariant using a type system, but

• Do not interfere with efficient layout

What happened?



19

Object encoding



20

©2003 Christopher League

Objects are tuples of functions

• With single inheritance, all offsets should be known 
at compile time

• Therefore we just need tuples with fixed offsets

• No record extension or concatenation

• No first-class labels



21

©2003 Christopher League

Tuples
∆; Γ ! ei: τi ∀i ∈ 1 . . . n

∆; Γ ! 〈e1, . . . , en〉: 〈τ1, . . . , τn〉

∆; Γ ! e: 〈τ1, . . . , τn〉 1 ≤ i ≤ n

∆; Γ ! e.i: τi



22

©2003 Christopher League

Functions

∆; Γ ! e : τ → τ ′ ∆; Γ ! e ′ : τ

∆; Γ ! e e ′ : τ ′

∆; Γ, x : τ ! e : τ ′

∆; Γ ! λx :τ.e : τ → τ ′



23

©2003 Christopher League

• Suppose    is an object, with an integer method 
in slot 1 of its vtable

• But what is the type of     ?

Typing self application

x

x

∆; Γ ! (x.1.1) x : int



24

©2003 Christopher League

Typing self application

∆; Γ ! (x.1.1) x : int

∆; Γ ! x : τx∆; Γ ! x.1.1 : τx → int∆; Γ ! x.1 : 〈τx → int〉∆; Γ ! x : 〈〈τx → int〉, int〉



25

©2003 Christopher League

Recursive definition?
τx = 〈〈τx → int〉, int〉

τx = µα.〈〈α → int〉, int〉
= 〈〈(µα.〈〈α → int〉, int〉) → int〉, int〉



26

©2003 Christopher League

• But what about subclasses?

• Subtyping doesn’t help much,
due to the recursive type

• Again, take inspiration from the programmer...

A simple object type
τx = µα.〈〈α → int〉, int〉



27

©2003 Christopher League

• Programmers distinguish between the static
and dynamic classes of an object

Each object has two types

Object x;
if (rand()%2 == 0) { x = new Cat(); }
else { x = new Dog(); }
x.toString();



28

©2003 Christopher League

• The static class is known at compile time.
The dynamic class is unknown,
but it is some subclass of the static class.

• There are several ways to model this idea directly

Each object has two types



29

©2003 Christopher League

• ...with an existential quantifier

Embrace the unknown

∆, α :: κ ! τ :: Type ∆ ! τ ′ :: κ
∆; Γ ! e : τ[α := τ ′]

∆; Γ ! hide α :: κ = τ ′ in e :τ : ∃α :: κ.τ

∆; Γ ! e : ∃α :: κ.τ ∆ ! τ ′ :: Type
∆, α :: κ; Γ, x : τ ! e ′ : τ ′

∆; Γ ! open e as α :: κ, x : τ in e ′ : τ ′



30

©2003 Christopher League

• Each object may have additional fields and methods 
beyond what is known at compile time.

Quantify over tuple tail

∆ ! Endi :: Ri

∆ ! τ :: Type ∆ ! τ ′ :: Ri+1

∆ ! τ; τ ′ :: Ri

∆ ! τ :: R0

∆ ! 〈τ〉 :: Type



31

©2003 Christopher League

Efficient object encodings

I = λα.〈α → int〉
I ′ = λδ :: Type→ R1.λα.〈α → int; δ α〉

∃α.α ∧ (I α)

∃α ≤ (I α).α

∃δ :: Type→ R1.µα.(I ′ δ α)



32

Non-manifest base classes



33

©2003 Christopher League

Limitations

• Preceding ideas work well for most of Java & C#

• Single inheritance

• Method offsets known at compile time

• Some languages are more flexible

• Moby — base class specified at link time

• Loom — first-class classes

• Mixins



34

©2003 Christopher League

• The common substrate of many 
advanced OO features

• When compiling a class C, relatively little 
is known about its super class

• How do we determine C’s object layout?

• Method calls are more expensive; 
how to optimize them?

Non-manifest base classes



35

©2003 Christopher League

• Fisher, Reppy, and Riecke [ESOP 2000] developed 
an untyped IL to handle non-manifest base classes

• Method suites are still tuples

• Dictionaries map method labels to their offsets

• Offsets may be computed and stored at compile 
time, link time, or run time.

• A type system for ‘links’ seems very difficult

‘Links’



36

©2003 Christopher League

• Shao, et al. [POPL 2002] showed how to use 
calculus of constructions as a very sophisticated 
type language for any computation language

• Example: reason about array indices in the type 
language, and safely lift & remove bounds checks in 
the computation language

• Should work for reasoning about offsets in Links

Type-safe ‘certified binaries’


