


Why typed compilation?

* We must ensure safe, efficient execution
of untrusted code

* Digital signature confirms identity, not safety

* Reference monitor too expensive for
fine-grained properties




How does it work?

* Develop sound & decidable type system for
intermediate and object languages

* Transform source-level type information

* Emit object code + typing derivation




Why objects?

* Cannot deny that OO technology remains popular...
e

Component-Based
Development with Visual C#

SMALL.TAL.K

AN INTRODUCTION TO
APPLICATION DEVELOPMENT J
USING VISUALWORKS

Ted Falson

T R e

Programming

Ruby

A
X The C++

Programming
Language

LD 17T 1T ON

Ken Arnold + James Gosling + David Holmes '

rooY

The Java Programmmg
Ldnguage 1rnrner’s Guide
Third Edition ?}iﬂfff’rff.]ﬁ:’?iiﬁﬂflﬁgﬁiﬁﬁ

The Java™ Series

Programming in

Objective-C

® Andrew Hunt

‘oustrup
r of C+







What is an object?

* C++ compiler hacker:

“An object is just a struct with a pointer to
a struct containing function pointers.”

* True, but that fails to capture the subtle invariants
that make it work...




What is an object?

* Functional programming advocate:

“An object is just a closure
with multiple entry points.”

* Maybe, but that fails to account for
dynamic binding.




Dynamic binding is essential

* Inheritance without polymorphism is possible,
but certainly not very useful.

* One can declare derived types, but
the actual operation being called is
always known at compile time.

[Booch 1994]




Outline

* Object layout — efficient dynamic dispatch
* Object encoding — capturing the invariants

* Additional issues in compiling Java

* Compiling non-manifest base classes







What is object layout?

* von Neumann architecture has no notion of
methods, objects, classes, inheritance, or
dynamic binding

* We must map these features onto load/store
operations and sequential memory

* Procedural abstractions (records and functions)
are “closer to the metal”




Learn from compiler hackers

* Whether or not they know type theory,
they certainly understand invariants

* The efficient layout used in C++ works for a reason

* Can we understand and capture that reason?




Implementing dynamic dispatch

Object x = ...;
x.toString(); // invokevirtual — a primitive
// of the Java Virtual Machine




Implementing dynamic dispatch

Object x = ...; X
x.toString();

vtab

. toString

equal

// virtual method call expands to:
if (x == null) throw NullPointerExn;

rl = x.vtab;
r2 = rl.toString;
call 12 (x);

self argument




Multiple objects share vtable

Object x = ...;
x.toString();

Object v = ..;




Subclasses share method code

Object x = ...; X
x.toString();

. toString

equal
InputStream z = ...;

. toString

equal

read

close N

LONGISIAND
UNIVERSITY-

16




Breaking the invariant

Object ¢ = new C(); c
c.toString();

toString

equal

Object d = new D();

// virtual method call i
(null check)

rl = c.vtab;

r2 = rl.toString;

call 12 (c); ...

call r2 (d); il

toString

equal

s~




What happened?

* The object passed as the self argument must be the
same object from which the method was selected

* (Actually, it must belong to same dynamic class)
* Goal:
* Encode that invariant using a type system, but

* Do not interfere with efficient layout







Objects are tuples of functions

* With single inheritance, all offsets should be known
at compile time

* Therefore we just need tuples with fixed offsets
* No record extension or concatenation

* No first-class labels










Typing self application

* Suppose x is an object, with an integer method
in slot 1 of its vtable

AT E (x.1.71) x :int

* But what is the type of x ?




Typing self application

AT x 1 ({Tx — int), int)

AT Fx.1: (T, — int)
it Tttt alfl AR oAt U e 1l el ol ol
sl 1 1) i 2l ing







A simple object type

Ty = Ho.{{ox — int), int)
* But what about subclasses?

* Subtyping doesn’t help much,
due to the recursive type

* Again, take inspiration from the programmer..




Fach object has two types

* Programmers distinguish between the static
and dynamic classes of an object

Object x;

if (rand()%2 == 0) { x = new Cat(); }
else { x = new Dog(); }
x.toString();




Fach object has two types

* The static class is known at compile time.
The dynamic class is unknown,
but it is some subclass of the static class.

* There are several ways to model this idea directly




Embrace the unknown

* ..with an existential quantifier
Aol atimietiaiilivine ANl
NIt @iimlion et (]

it hideiod i i inlie it didloi kT

Gl It iCAb S o ddH e At e
itadadiatilisatimiimiie !« mf

il topenielias ok x : Tinel : 1/




Quantify over tuple tail

* Each object may have additional fields and methods
beyond what is known at compile time.

A 1 Type il ol *dhit
At R
Al R
A+ End' :; R A F (1) = Type










[Limitations

* Preceding ideas work well for most of Java & C#
* Single inheritance
* Method offsets known at compile time
* Some languages are more flexible
* Moby — base class specified at link time
* Loom — first-class classes

* Mixins




Non-manifest base classes

* The common substrate of many
advanced OO features

* When compiling a class C, relatively little
is known about its super class

* How do we determine C’s object layout?

* Method calls are more expensive;
how to optimize them?




‘Links’
* Fisher, Reppy, and Riecke [ESOP 2000] developed
an untyped IL to handle non-manifest base classes
* Method suites are still tuples

* Dictionaries map method labels to their offsets

* Offsets may be computed and stored at compile
time, link time, or run time.

* A type system for ‘links’ seems very difficult




Type-safe ‘certified binaries’

e Shao, et al. [POPL 2002] showed how to use

calculus of constructions as a very sophisticated
type language for any computation language

* Example: reason about array indices in the type
language, and safely lift & remove bounds checks in
the computation language

* Should work for reasoning about offsets in Links




